Inhibitory Effects of 3′,4′-Dihydroxyflavonol in a Mouse Model of Glaucoma Filtration Surgery and TGFβ1-Induced Responses in Human Tenon's Fibroblasts

Autor: Jennifer C, Fan Gaskin, Roy C K, Kong, Manisha H, Shah, Amanda J, Edgley, Hitesh M, Peshavariya, Elsa C, Chan
Rok vydání: 2022
Předmět:
Zdroj: Translational Vision Science & Technology. 11:18
ISSN: 2164-2591
DOI: 10.1167/tvst.11.8.18
Popis: Cytotoxic agents such as mitomycin C (MMC) are part of the mainstay treatment for limiting subconjunctival scarring following glaucoma filtration surgery (GFS). However, a safer antifibrotic therapy is clinically needed. The anti-scarring properties of 3',4'-dihydroxyflavonol (DiOHF) were evaluated in a mouse model of GFS and in cultured human Tenon's fibroblasts (HTFs).GFS was performed in C57BL/6 mice receiving daily intraperitoneal injections of DiOHF or vehicle or a single intraoperative injection of MMC. Eyes were harvested on day 14 for assessment of collagen deposition, expression of alpha-smooth muscle actin (α-SMA), cluster of differentiation 31 (CD31), and 4-hydroxy-2-nonenal (4HNE) in the conjunctiva/Tenon's layer. The inhibitory effects of DiOHF on transforming growth factor β (TGFβ)-induced responses were also assessed in HTFs.Treatment with DiOHF demonstrated a reduction in collagen deposition at the GFS site compared to vehicle-treated mice. The degree of 4HNE-positive fluorescence was significantly reduced in DiOHF-treated eyes compared to the other groups, indicating a decrease in oxidative stress. A reduction in expression of α-SMA and CD31 was seen in DiOHF-treated conjunctiva compared to those treated with vehicle. Concordant results were demonstrated in cultured HTFs in vitro. Furthermore, treatment of cultured HTFs with DiOHF also displayed a reduction in the proliferation, migration, and contractility of HTFs.Treatment with DiOHF reduces scarring and angiogenesis in the conjunctiva of mice with GFS at a level comparable to MMC. The reduction in oxidative stress suggests that DiOHF may suppress scarring via different mechanisms from MMC.DiOHF may be a safer and superior wound modulating agent than conventional antifibrotic therapy in GFS.
Databáze: OpenAIRE