The Elliptic Gaudin Model: a Numerical Study

Autor: C. Esebbag, Jorge Dukelsky
Rok vydání: 2015
Předmět:
DOI: 10.48550/arxiv.1509.01451
Popis: The elliptic Gaudin model describes completely anisotropic spin systems with long range interactions. The model was proven to be quantum integrable by Gaudin and latter the exact solution was found by means of the algebraic Bethe ansatz. In spite of the appealing properties of the model, it has not yet been applied to any physical problem. We here generalize the exact solution to systems with arbitrary spins, and study numerically the behavior of the Bethe roots for a system with three different spins. Then, we propose an integrable anisotropic central spin model that we study numerically for very large systems.
Comment: 19 pages, 5 figures
Databáze: OpenAIRE