High speed processing of NiFe2O4 spinel using a laser furnace
Autor: | Luis A. Angurel, H. Santos, G.F. de la Fuente, S. Özçelik, Bekir Özçelik, H. Amaveda, Regino Sáez-Puche, C.J. Borrell |
---|---|
Přispěvatelé: | Ministerio de Economía y Competitividad (España), Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), European Commission, Gobierno de Aragón |
Rok vydání: | 2020 |
Předmět: |
Materials science
Evaporation 02 engineering and technology engineering.material 010402 general chemistry 01 natural sciences law.invention Magnetization law Magnetic properties lcsh:TA401-492 Ceramic Surface layer Laser furnace process Composite material Laser ablation Spinel Metals and Alloys 021001 nanoscience & nanotechnology Microstructure Laser X-ray diffraction 0104 chemical sciences Surfaces Coatings and Films Electronic Optical and Magnetic Materials NiFe2O4 spinel visual_art engineering visual_art.visual_art_medium lcsh:Materials of engineering and construction. Mechanics of materials 0210 nano-technology |
Zdroj: | Zaguán: Repositorio Digital de la Universidad de Zaragoza Universidad de Zaragoza Digital.CSIC. Repositorio Institucional del CSIC instname Zaguán. Repositorio Digital de la Universidad de Zaragoza Journal of Materiomics, Vol 6, Iss 4, Pp 661-670 (2020) Journal of Materiomics |
Popis: | The Laser Furnace (LF) method has been applied to directionally solidify NiFe2O4 spinel disks from a mixture of Fe and Ni oxides in order to obtain uniform, dense targets for controlled synthesis of spinel nanoparticles via Laser Ablation. Application of a CO2 laser in Line Scan mode onto a sample with the desired stoichiometry, enabled melt processing above 1580 °C at its outer surface layer. This process was carried out inside a continuous roller furnace at a maximum volume temperature of 1000 °C. Such combination helps avoid excessive thermal stress, crack formation and catastrophic failure of these magnetic ceramic monoliths. Higher energy incubation values yield increased molten volumes and a thicker resolidified surface layer with a dense microstructure. Despite the high solidification rates imposed, NiFe2O4 spinel is the main phase obtained according to X-Ray Diffraction (XRD) and magnetization studies. LF processed samples exhibit a reduction of the coercive fields and an increase of the saturation magnetization values, evidence for soft ferromagnetism and characteristic of the magnetic behaviour associated with this spinel. This work demonstrates the convenience of the LF method for preparation of uniform, dense targets for Laser Ablation and other evaporation based techniques used in the fabrication of nanoparticles. The authors acknowledge financial support from MINECO-AEI-FEDER, EU (projects MAT2016-79866-R and ENE2017-83669-C4-1-R) and SPRINT (EU H2020-FET-OPEN/0426) projects and from Gobierno de Aragón “Construyendo Europa desde Aragón” (research group T54_17R). |
Databáze: | OpenAIRE |
Externí odkaz: |