Sulforaphane prevents age-associated cardiac and muscular dysfunction through Nrf2 signaling

Autor: Inês N Alves, Chhanda Bose, Elisabet Børsheim, Marjan Boerma, Eugenia Carvalho, Amrita K. Cheema, Sharda P Singh, Philip Palade, Se-Ran Jun, Preeti Singh, Sanjay Awasthi
Přispěvatelé: Instituto de Investigação e Inovação em Saúde
Jazyk: angličtina
Rok vydání: 2020
Předmět:
0301 basic medicine
Cardiac function curve
Male
Aging
medicine.medical_specialty
Sarcopenia
Sarcopenia / pathology
NF-E2-Related Factor 2
cardiac functions
Sulfoxides / pharmacology
Isothiocyanates / therapeutic use
Biology
medicine.disease_cause
Nrf2
03 medical and health sciences
chemistry.chemical_compound
Mice
0302 clinical medicine
Insulin resistance
Sulfoxides / therapeutic use
Isothiocyanates
Internal medicine
mitochondrial dysfunction
medicine
Animals
Myopathy
Loss function
Cardiac functions
Original Paper
Skeletal muscle
Cell Biology
Original Articles
medicine.disease
Oxidative Stress
030104 developmental biology
medicine.anatomical_structure
Endocrinology
chemistry
Sulfoxides
NF-E2-Related Factor 2 / metabolism
medicine.symptom
Isothiocyanates / pharmacology
Mitochondrial dysfunction
Sulforaphane
030217 neurology & neurosurgery
Oxidative stress
Signal Transduction
Zdroj: Aging Cell
Popis: Scheme depicts hypothesized decreases of heart and SKM function during aging via ROS and partial reversal by SFN activation of Nrf2 that results in significant restoration of function of both types of muscle. A decline in heart and skeletal muscle function was observed in aged mice, with altered mitochondrial structure and gene expression, accompnied by decreases in mitochondrial complex activity, Nrf2 binding to antioxidant‐responsive DNA elements and physical endurance. The addition of sulforaphane (SFN) to the diet improved these age‐related changes in older mice to levels observed in younger ones. We demonstrated in this paper that SFN alleviates age‐associated oxidative damage and improves mitochondrial and cardiac function as well as physical endurance in old mice.
Age‐associated mitochondrial dysfunction and oxidative damage are primary causes for multiple health problems including sarcopenia and cardiovascular disease (CVD). Though the role of Nrf2, a transcription factor that regulates cytoprotective gene expression, in myopathy remains poorly defined, it has shown beneficial properties in both sarcopenia and CVD. Sulforaphane (SFN), a natural compound Nrf2‐related activator of cytoprotective genes, provides protection in several disease states including CVD and is in various stages of clinical trials, from cancer prevention to reducing insulin resistance. This study aimed to determine whether SFN may prevent age‐related loss of function in the heart and skeletal muscle. Cohorts of 2‐month‐old and 21‐ to 22‐month‐old mice were administered regular rodent diet or diet supplemented with SFN for 12 weeks. At the completion of the study, skeletal muscle and heart function, mitochondrial function, and Nrf2 activity were measured. Our studies revealed a significant drop in Nrf2 activity and mitochondrial functions, together with a loss of skeletal muscle and cardiac function in the old control mice compared to the younger age group. In the old mice, SFN restored Nrf2 activity, mitochondrial function, cardiac function, exercise capacity, glucose tolerance, and activation/differentiation of skeletal muscle satellite cells. Our results suggest that the age‐associated decline in Nrf2 signaling activity and the associated mitochondrial dysfunction might be implicated in the development of age‐related disease processes. Therefore, the restoration of Nrf2 activity and endogenous cytoprotective mechanisms by SFN may be a safe and effective strategy to protect against muscle and heart dysfunction due to aging.
Databáze: OpenAIRE