Loading of 5-aminosalicylic in solid lipid microparticles (SLM): Solubility screening of lipid excipients and physicochemical characterization

Autor: Lucas Rannier, Luciana Nalone, Luiz Pereira da Costa, Classius Ferreira da Silva, Elisânia F. Silveira, Ricardo Luiz Cavalcanti de Albuquerque Júnior, Marco Vinícius Chaud, Eliana B. Souto, Raquel de Melo Barbosa, Patrícia Severino
Přispěvatelé: Universidade do Minho
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Popis: 5-Aminosalicylic acid (5-ASA), the active moiety of sulphasalazine, is the most commonly used drug for treating patients with inflammatory bowel disease (IBD). Its bioavailability is low, i.e. 20--30\% upon oral administration and 10--35\\% by rectal administration. As the extent of 5-ASA absorption is very much dependent on the time-length, the drug is retained in the colon, a way to increase drug retention is the use of orally administered sustained released formulations. Solid lipid microparticles (SLM) are a viable option for site-specific targeted delivery in compressed tablets produced by direct compaction. In this study, we describe the development and characterization of 5-ASA-loaded SLM for sustained release. The solubility of 5-ASA in different types of solid lipids (e.g. cetyl palmitate, cetyl alcohol, and cetearyl alcohol) was evaluated to select the best lipid as the inert matrix-forming agent to control the release of the drug. SLM dispersions were prepared using the hot emulsification method employing the selected solid lipid, lecithin (Lipoid®) as surfactant, dimethyl sulphoxide, and acetone stabilized with Arlacel®. The characterization was performed by differential scanning calorimetry, thermogravimetric analysis, wide-angle x-ray diffraction, Fourier transform infrared spectroscopy measurements, optical microscopy, and scanning electron microscopy. Results show that the best lipid for dissolving the 5-ASA was cetyl palmitate and that the melting process did not affect the chemical stability of the materials. The thermal analysis suggests that 5-ASA was successfully encapsulated with the microparticles, of spherical shape and uniform size distribution.
The authors wish to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico –CNPq (Processes #443238/2014-6 and #470388/2014-5) for their financial support. This work was also financed through the project M-ERA-NET/0004/2015 from the Portuguese Science and Technology Foundation, Ministry of Science and Education (FCT/MEC) from national funds, and co-financed by FEDER, under the Partnership Agreement PT2020.
info:eu-repo/semantics/publishedVersion
Databáze: OpenAIRE