Recognition of Alzheimer's disease and Mild Cognitive Impairment with multimodal image-derived biomarkers and Multiple Kernel Learning
Autor: | Ben Ahmed, Olfa, Benois-Pineau, Jenny, Michelle, Allard, Catheline, Gwenaelle, Ben Amar, Chokri, The Alzheimer'S Disease Neuroimaging Initiative, |
---|---|
Přispěvatelé: | Image et Son, Laboratoire Bordelais de Recherche en Informatique (LaBRI), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)-Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB), Institut de Neurosciences cognitives et intégratives d'Aquitaine (INCIA), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-SFR Bordeaux Neurosciences-Centre National de la Recherche Scientifique (CNRS), REsearch Group in Intelligent Machines [Sfax] (REGIM-Lab), École Nationale d'Ingénieurs de Sfax | National School of Engineers of Sfax (ENIS), co-tutelle, INCIA, Université de Sfax |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Computer science
Cognitive Neuroscience [SDV]Life Sciences [q-bio] 02 engineering and technology Disease Machine learning computer.software_genre ACM: G.: Mathematics of Computing 03 medical and health sciences [SPI]Engineering Sciences [physics] 0302 clinical medicine Neuroimaging ACM: H.: Information Systems Artificial Intelligence 0202 electrical engineering electronic engineering information engineering [INFO]Computer Science [cs] Multiple kernel learning business.industry [INFO.INFO-MM]Computer Science [cs]/Multimedia [cs.MM] Multimodal therapy Computer Science Applications Binary classification MESH: Alzheimer's disease Multiple Kernel Learning Mutlimodal fusion Diagnosis Local features DTI MD maps CHFs Imaging biomarkers 020201 artificial intelligence & image processing Artificial intelligence business computer 030217 neurology & neurosurgery Diffusion MRI |
Zdroj: | Neurocomputing Neurocomputing, Elsevier, 2017, Recent Research in Medical Technology Based on Multimedia and Pattern Recognition, 220, pp.98-110. ⟨10.1016/j.neucom.2016.08.041⟩ |
ISSN: | 0925-2312 |
DOI: | 10.1016/j.neucom.2016.08.041⟩ |
Popis: | International audience; Computer-Aided Diagnosis (CAD) of Alzheimer's disease (AD) has drawn the attention of computer vision research community over the last few years. Several attempts have been made to adapt pattern recognition approaches to specific neuroimaging data such as Structural MRI (sMRI) for early AD diagnosis. One strategy is to boost the discrimination power of such approaches by integrating complementary imaging modalities in a single learning framework. Diffusion Tensor Imaging (DTI) is a new and promising modality giving complementary information to the anatomical MRI. However, including relevant DTI information from such modality is a challenging problem. In this paper, we propose to extract local image-derived biomarkers from DTI and sMRI to construct multimodal AD signatures. To assess the relevance of such modalities as well as to optimize the classifier, we integrate complementary information using a Multiple Kernel Learning (MKL) framework for AD subjects recognition. To evaluate our method, we perform experiments on a subset from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Both T1-weighted MRI and Mean Diffusivity (MD) maps from the DTI modality of 45 AD patients, 52 Normal Control (NC) and 58 Mild Cognitive Impairment (MCI) subjects have been used. The obtained results indicate that our multimodal approach yields significant improvement in accuracy over using each single modality independently. The classification accuracies obtained by the proposed method are 90.2%, 79.42% and 76.63% for respectively AD vs. NC, MCI vs. NC and AD vs. MCI binary classification problems. For the MCI classification problem, the proposed fusion framework leads to an average increase about at least 9% for the accuracy, 5% for the specificity and 15% for the sensitivity. |
Databáze: | OpenAIRE |
Externí odkaz: |