Development of an extended reactor configuration to analyze preferential segregation impact on spray autoignition
Autor: | Cecile Pera, Zakaria Bouali, Julien Reveillon |
---|---|
Přispěvatelé: | Institut Pprime (PPRIME), ENSMA-Centre National de la Recherche Scientifique (CNRS)-Université de Poitiers, IFP Energies nouvelles (IFPEN), Complexe de recherche interprofessionnel en aérothermochimie (CORIA), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), OROVEL |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
DNS
020209 energy General Chemical Engineering Flow (psychology) Evaporation Mixing (process engineering) Energy Engineering and Power Technology 02 engineering and technology Preferential segregation Momentum 020401 chemical engineering Autoignition Phase (matter) 0202 electrical engineering electronic engineering information engineering 0204 chemical engineering Physics::Chemical Physics Two-phase flows [PHYS]Physics [physics] Turbulence Organic Chemistry Autoignition temperature Mechanics Chemical reactor [SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph] NTC Fuel Technology Evaporative cooler |
Zdroj: | Fuel Fuel, Elsevier, 2021, 302, pp.120869. ⟨10.1016/j.fuel.2021.120869⟩ |
ISSN: | 0016-2361 1873-7153 |
Popis: | International audience; The chemical reactor concept, usually based on a homogeneous mixture, is extended to non-homogeneous two-phase flows to study the impact of preferential segregation on the autoignition of an n-heptane spray in air. To introduce inhomogeneities, two-dimensional reactors are resolved thanks to direct numerical simulations (DNS) with Eulerian/Lagrangian description to follow the evolution of the carrier phase and the dispersed evaporating droplets, respectively. Two-way coupling is considered through exchange of mass, momentum, and energy between the carrier-gas phase and the dispersed phase. A chemistry mechanism with 29 species and 52 reactions was chosen to describe the chemical reaction paths. Several simulations were performed with various initial gas temperatures (i.e. low, intermediate and high) and various geometrical and physical characteristics of the preferential segregation. Results confirmed that evaporative cooling, vapor mass quantity and turbulence mixing play important roles in the two-phase flow autoignition. We discussed the ignition delay as well as the location of the first hot spots according to the initial gas temperatures. The dependence of most reactive mixture fraction on initial carrier-gas temperature is non-monotonic, thus there is a strong correlation between the first autoignition location and low scalar dissipation rate. On the other hand, the autoignition can start whatever the vorticity magnitude is. |
Databáze: | OpenAIRE |
Externí odkaz: |