Hybrid Refractive-Diffractive Lens with Reduced Chromatic and Geometric Aberrations and Learned Image Reconstruction

Autor: Viktoria Evdokimova, Vladimir Podlipnov, Nikolay Ivliev, Maxim Petrov, Sofia Ganchevskaya, Vladimir Fursov, Yuriy Yuzifovich, Sergey Stepanenko, Nikolay Kazanskiy, Artem Nikonorov, Roman Skidanov
Rok vydání: 2022
Předmět:
Zdroj: Sensors; Volume 23; Issue 1; Pages: 415
ISSN: 1424-8220
Popis: In this paper, we present a hybrid refractive-diffractive lens that, when paired with a deep neural network-based image reconstruction, produces high-quality, real-world images with minimal artifacts, reaching a PSNR of 28 dB on the test set. Our diffractive element compensates for the off-axis aberrations of a single refractive element and has reduced chromatic aberrations across the visible light spectrum. We also describe our training set augmentation and novel quality criteria called “false edge level” (FEL), which validates that the neural network produces visually appealing images without artifacts under a wide range of ISO and exposure settings. Our quality criteria (FEL) enabled us to include real scene images without a corresponding ground truth in the training process.
Databáze: OpenAIRE