The RING E3 ligase KEEP ON GOING modulates JASMONATE ZIM-DOMAIN12 stability
Autor: | Yangnan Gu, Sophia L. Stone, Marta Boter, Kris Gevaert, Jan Geerinck, Roberto Solano, Judy Callis, Roger W. Innes, Rebecca De Clercq, Hong Xia Liu, Laurens Pauwels, Geert De Jaeger, Jonas Goossens, Jelle Van Leene, Alain Goossens, Astrid Nagels Durand, Andrés Ritter, Robin Vanden Bossche |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
EXPRESSION
Physiology Ubiquitin-Protein Ligases Arabidopsis Repressor TANDEM AFFINITY PURIFICATION Plant Science JAZ REPRESSORS chemistry.chemical_compound SPLICE VARIANT Gene Expression Regulation Plant Tobacco Genetics Jasmonate Transcription factor Abscisic acid Tandem affinity purification chemistry.chemical_classification DNA ligase biology Arabidopsis Proteins Basic Helix-Loop-Helix Leucine Zipper Transcription Factors Protein Stability Biology and Life Sciences Articles ABSCISIC-ACID Plants Genetically Modified biology.organism_classification DISEASE RESISTANCE1 PROTEIN Protein Structure Tertiary Ubiquitin ligase Repressor Proteins chemistry Biochemistry Gene Knockdown Techniques Mutation BHLH TRANSCRIPTION FACTORS biology.protein NEGATIVE REGULATORS ARABIDOPSIS-THALIANA Abscisic Acid RESPONSES |
Zdroj: | PLANT PHYSIOLOGY |
ISSN: | 0032-0889 |
Popis: | Jasmonate (JA) signaling in plants is mediated by the JASMONATE ZIM-DOMAIN (JAZ) proteins that repress the activity of several transcription factors regulating JA-inducible gene expression. The hormone JA-isoleucine triggers the interaction of JAZ repressor proteins with the F-box protein CORONATINE INSENSITIVE1 (COI1), part of an S-phase kinase-associated protein1/Cullin1/F-box protein COI1 (SCF(COI1)) E3 ubiquitin ligase complex, and their degradation by the 26S proteasome. In Arabidopsis (Arabidopsis thaliana), the JAZ family consists of 13 members. The level of redundancy or specificity among these members is currently not well understood. Here, we characterized JAZ12, encoded by a highly expressed JAZ gene. JAZ12 interacted with the transcription factors MYC2, MYC3, and MYC4 in vivo and repressed MYC2 activity. Using tandem affinity purification, we found JAZ12 to interact with SCF(COI1) components, matching with observed in vivo ubiquitination and with rapid degradation after treatment with JA. In contrast to the other JAZ proteins, JAZ12 also interacted directly with the E3 RING ligase KEEP ON GOING (KEG), a known repressor of the ABSCISIC ACID INSENSITIVE5 transcription factor in abscisic acid signaling. To study the functional role of this interaction, we circumvented the lethality of keg loss-of-function mutants by silencing KEG using an artificial microRNA approach. Abscisic acid treatment promoted JAZ12 degradation, and KEG knockdown led to a decrease in JAZ12 protein levels. Correspondingly, KEG overexpression was capable of partially inhibiting COI1-mediated JAZ12 degradation. Our results provide additional evidence for KEG as an important factor in plant hormone signaling and a positive regulator of JAZ12 stability. |
Databáze: | OpenAIRE |
Externí odkaz: |