Implementing model redundancy in predictive alternate test to improve test confidence

Autor: Haithem Ayari, Florence Azais, Serge Bernard, Mariane Comte, Vincent Kcrzerho, Olivier Potin, Michel Renovell
Přispěvatelé: Conception et Test de Systèmes MICroélectroniques (SysMIC), Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: ETS: European Test Symposium
ETS: European Test Symposium, May 2013, Avignon, France. 18th IEEE European Test Symposium, 2013, ⟨10.1109/ETS.2013.6569386⟩
ETS
DOI: 10.1109/ETS.2013.6569386⟩
Popis: International audience; This work investigates new implementations of the predictive alternate test strategy that exploit model redundancy in order to improve test confidence. The key idea is to build during the training phase, not only one regression model for each specification as in the classical implementation, but several regression models. We explore various options for implementing model redundancy, based on the use of different indirect measurement combinations and/or different partitions of the training set.
Databáze: OpenAIRE