SPARQL query answering with bitmap indexes

Autor: Julien Leblay
Přispěvatelé: Distributed and heterogeneous data and knowledge (LEO), Université Paris-Sud - Paris 11 (UP11)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Database optimizations and architectures for complex large data (OAK), Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), IASI, Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), ACM
Rok vydání: 2012
Předmět:
ACM: H.: Information Systems/H.2: DATABASE MANAGEMENT/H.2.4: Systems/H.2.4.5: Query processing
Computer science
Backward chaining
0102 computer and information sciences
02 engineering and technology
Query optimization
computer.software_genre
SPARQL
01 natural sciences
Storage model
RDF
query answering
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
ACM: H.: Information Systems/H.2: DATABASE MANAGEMENT/H.2.2: Physical Design
020204 information systems
Forward chaining
0202 electrical engineering
electronic engineering
information engineering

computer.programming_language
[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB]
Information retrieval
Languages
Performance
Experimentation
computer.file_format
010201 computation theory & mathematics
Bitmap index
storage model
Sargable
Data mining
computer
RDF query language
Zdroj: SWIM
SWIM-4th International Workshop on Semantic Web Information Management-2012
SWIM-4th International Workshop on Semantic Web Information Management-2012, May 2012, Scottsdale, AZ, United States
DOI: 10.1145/2237867.2237876
Popis: International audience; When querying RDF data, one may use reasoning to reach intensional data, i.e., data defined by sets of rules. This is usually achieved through forward chaining, with space and maintenance overheads, or backward chaining, with high query evaluation and optimization costs. Recent approaches rely on pre-computing the terminological closure of the data rather than the full saturation. In this setting, one can even query the data without resorting to backward chaining, using a so-called semantic index. However, these techniques are limited in the type of queries they can support. In this paper, we introduce a data storage technique which mitigates the space issues of forward-chaining. We show that it can also be used with a semantic index. We propose a new structure for the index that relies on bitmaps making it resilient to updates. Our experimental results demonstrate that our storage model significantly reduces the space required to store the data. We show that the indexes can be computed quickly and fit well in memory even for very large ontologies. Finally, we analyze how query answering is affected by the data layout.
Databáze: OpenAIRE