Ensemble of optimized echo state networks for remaining useful life prediction
Autor: | Piero Baraldi, Enrico Zio, Marco Rigamonti, Scott Poll, Indranil Roychoudhury, Kai Goebel |
---|---|
Přispěvatelé: | Chaire Sciences des Systèmes et Défis Energétiques EDF/ECP/Supélec (SSEC), EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF)-CentraleSupélec-SUPELEC-Ecole Centrale Paris, Laboratoire Génie Industriel - EA 2606 (LGI), CentraleSupélec, Politecnico di Milano [Milan] (POLIMI), Ecole Centrale Paris-Ecole Supérieure d'Electricité - SUPELEC (FRANCE)-CentraleSupélec-EDF R&D (EDF R&D), EDF (EDF)-EDF (EDF), NASA Ames Research Center (ARC) |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
0209 industrial biotechnology
Computer science Cognitive Neuroscience 02 engineering and technology Machine learning computer.software_genre Prediction Intervals [SPI]Engineering Sciences [physics] 020901 industrial engineering & automation Artificial Intelligence Prediction uncertainty 0202 electrical engineering electronic engineering information engineering Mean variance Ensembles ComputingMilieux_MISCELLANEOUS Echo state networks business.industry Echo (computing) Prediction interval Differential Evolution Computer Science Applications1707 Computer Vision and Pattern Recognition Computer Science Applications Recurrent neural network Recurrent neural networks Differential evolution 020201 artificial intelligence & image processing Noise (video) State (computer science) Artificial intelligence business computer |
Zdroj: | Neurocomputing Neurocomputing, Elsevier, 2018, 281, pp.121-138. ⟨10.1016/j.neucom.2017.11.062⟩ |
ISSN: | 0925-2312 |
DOI: | 10.1016/j.neucom.2017.11.062⟩ |
Popis: | International audience; The use of Echo State Networks (ESNs) for the prediction of the Remaining Useful Life (RUL) of industrial components, i.e. the time left before the equipment will stop fulfilling its functions, is attractive because of their capability of handling the system dynamic behavior, the measurement noise, and the stochasticity of the degradation process. In particular, in this paper we originally resort to an ensemble of ESNs, for enhancing the performances of individual ESNs and providing also an estimation of the uncertainty affecting the RUL prediction. The main methodological novelties in our use of ESNs for RUL prediction are: i) the use of the individual ESN memory capacity within the dynamic procedure for aggregating of the ESNs outcomes; ii) the use of an additional ESN for estimating the RUL uncertainty, within the Mean Variance Estimation (MVE) approach. With these novelties, the developed approach outperforms a static ensemble and a standard MVE approach for uncertainty estimation in tests performed on a synthetic and two industrial datasets. |
Databáze: | OpenAIRE |
Externí odkaz: |