Remoteness and distance, distance (signless) Laplacian eigenvalues of a graph
Autor: | Hongye Song, Huicai Jia |
---|---|
Rok vydání: | 2018 |
Předmět: |
Mathematics::Analysis of PDEs
010103 numerical & computational mathematics 0102 computer and information sciences Distance eigenvalues 01 natural sciences Combinatorics Computer Science::General Literature Discrete Mathematics and Combinatorics 0101 mathematics ComputingMilieux_MISCELLANEOUS Eigenvalues and eigenvectors Connectivity Mathematics lcsh:Mathematics Research Computer Science::Information Retrieval Applied Mathematics Astrophysics::Instrumentation and Methods for Astrophysics Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing) Mathematics::Spectral Theory lcsh:QA1-939 Remoteness Signless laplacian Graph Vertex (geometry) TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES 010201 computation theory & mathematics ComputingMethodologies_DOCUMENTANDTEXTPROCESSING 05C50 Distance (signless) Laplacian eigenvalues Laplace operator Analysis |
Zdroj: | Journal of Inequalities and Applications Journal of Inequalities and Applications, Vol 2018, Iss 1, Pp 1-12 (2018) |
ISSN: | 1029-242X |
DOI: | 10.1186/s13660-018-1663-5 |
Popis: | Let G be a connected graph of order n. The remoteness of G, denoted by ρ, is the maximum average distance from a vertex to all other vertices. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\partial_{1}\geq\cdots\geq\partial_{n}$\end{document}∂1≥⋯≥∂n, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\partial_{1}^{L}\geq\cdots\geq\partial_{n}^{L}$\end{document}∂1L≥⋯≥∂nL and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\partial_{1} ^{Q}\geq\cdots\geq\partial_{n}^{Q}$\end{document}∂1Q≥⋯≥∂nQ be the distance, distance Laplacian and distance signless Laplacian eigenvalues of G, respectively. In this paper, we give lower bounds on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho+\partial _{1}$\end{document}ρ+∂1, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho-\partial_{n}$\end{document}ρ−∂n, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\rho+\partial_{1}^{L}$\end{document}ρ+∂1L, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\partial_{1} ^{L}-\rho$\end{document}∂1L−ρ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2\rho+\partial_{1}^{Q}$\end{document}2ρ+∂1Q and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\partial_{1}^{Q}-2\rho$\end{document}∂1Q−2ρ and the corresponding extremal graphs are also characterized. |
Databáze: | OpenAIRE |
Externí odkaz: |