An in vitro study of two GAG-like marine polysaccharides incorporated into injectable hydrogels for bone and cartilage tissue engineering
Autor: | Corinne Sinquin, Pierre Weiss, Emilie Rederstorff, Fan Xie, Samia Laïb, Sylvia Colliec-Jouault, Jérôme Guicheux, P. Pilet, Sophie Sourice |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2011 |
Předmět: |
Compressive Strength
Cell Cell Culture Techniques 02 engineering and technology Biochemistry Cartilage tissue engineering Glycosaminoglycan chemistry.chemical_compound Mice Hyaluronic acid Polysaccharide Bone and cartilage tissue engineering Cells Cultured Glycosaminoglycans chemistry.chemical_classification 0303 health sciences Hydrogels General Medicine Hydrogen-Ion Concentration 021001 nanoscience & nanotechnology medicine.anatomical_structure Self-healing hydrogels 0210 nano-technology Biotechnology Materials science In vitro test Cell Survival Biomedical Engineering Injectable hydrogels Bone and Bones Injections Biomaterials 03 medical and health sciences medicine Animals Seawater Molecular Biology Cell Shape 030304 developmental biology Cell Proliferation Tissue Engineering Osmolar Concentration technology industry and agriculture Hydrogel Cartilage chemistry Microscopy Fluorescence Cell culture Microscopy Electron Scanning Biomedical engineering |
Zdroj: | Acta Biomaterialia (1742-7061) (Elsevier Sci Ltd), 2011-05, Vol. 7, N. 5, P. 2119-2130 |
Popis: | Natural polysaccharides are attractive compounds with which to build scaffolds for bone and cartilage tissue engineering. Here we tested two non-standard ones, HE800 and GY785, for the two-dimensional (2-D) and three-dimensional (3-D) culture of osteoblasts (MC3T3-E1) and chondrocytes (C28/I2). These two glycosaminoglycan-like marine exopolysaccharides were incorporated into an injectable silylated hydroxypropylmethylcellulose-based hydrogel (Si-HPMC) that has already shown its suitability for bone and cartilage tissue engineering. Results showed that, similarly to hyaluronic acid (HA) (the control), HE800 and GY785 significantly improved the mechanical properties of the Si-HPMC hydrogel and induced the attachment of MC3T3-E1 and C28/I2 cells when these were cultured on top of the scaffolds. Si-HPMC hydrogel containing 0.67% HE800 exhibited the highest compressive modulus (11 kPa) and allowed the best cell dispersion, especially of MC3T3-E1 cells. However, these cells did not survive when cultured in 3-D within hydrogels containing HE800, in contrast to C28/I2 cells. The latter proliferated in the microenvironment or concentrically depending on the nature of the hydrogel. Among all the constructs tested the Si-HPMC hydrogels containing 0.34% HE800 or 0.67% GY785 or 0.67% HA presented the most interesting features for cartilage tissue engineering applications, since they offered the highest compressive modulus (9.5–11 kPa) while supporting the proliferation of chondrocytes. |
Databáze: | OpenAIRE |
Externí odkaz: |