SUPG-based stabilization using a separated representations approach

Autor: Antonio Huerta, Francisco Chinesta, L. Debeugny, Elías Cueto, D. González, Pedro Díez
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III, Universitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
Předmět:
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Scipedia Open Access
Scipedia SL
Popis: We have developed a new method for the construction of Streamline Upwind Petrov Galerkin (SUPG) stabilization techniques for the resolution of convection-diffusion equations based on the use of separated representations inside the Proper Generalized Decompositions (PGD) framework. The use of SUPG schemes produces a consistent stabilization adding a parameter to all the terms of the equation (not only the convective one). SUPG obtains an exact solution for problems in 1D, nevertheless, a generalization does not exist for elements of high order or for any system of convection-diffusion equations. We introduce in this paper a method that achieves stabilization in the context of Proper Generalzied Decomposition (PGD). This class of approximations use a representation of the solution by means of the sum of a finite number of terms of separable functions. Thus it is possible to use the technique of separation of variables in the context of problems of convection-diffusion that will lead to a sequence of problems in 1D where the parameter of stabilization is well known.
Databáze: OpenAIRE