Calculi, Hodge operators and Laplacians on a quantum Hopf fibration
Autor: | Alessandro Zampini, Giovanni Landi |
---|---|
Přispěvatelé: | Landi, Giovanni, Zampini, A., Zampini, Alessandro |
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
High Energy Physics - Theory
Pure mathematics gauged Laplacian operators differential calculi quantum sphere FOS: Physical sciences quantum spheres Hodge dualities Laplacian operators Hopf bundle Mathematics - Quantum Algebra FOS: Mathematics Quantum Algebra (math.QA) Covariant transformation Hodge dualitie Quantum Mathematical Physics Mathematics quantum groups Laplacian operator Quantum group connection Statistical and Nonlinear Physics Differential calculus Mathematical Physics (math-ph) High Energy Physics - Theory (hep-th) Hodge star operator Line (geometry) Homogeneous space quantum group Hopf fibration Laplace operator |
Zdroj: | Reviews in Mathematical Physics |
Popis: | We describe Laplacian operators on the quantum group SUq (2) equipped with the four dimensional bicovariant differential calculus of Woronowicz as well as on the quantum homogeneous space S2q with the restricted left covariant three dimensional differential calculus. This is done by giving a family of Hodge dualities on both the exterior algebras of SUq (2) and S2q . We also study gauged Laplacian operators acting on sections of line bundles over the quantum sphere. v3, one reference corrected, one reference added. 31 pages |
Databáze: | OpenAIRE |
Externí odkaz: |