From semiclassical Strichartz estimates to uniform $L^p$ resolvent estimates on compact manifolds

Autor: Nicolas Burq, David Dos Santos Ferreira, Katya Krupchyk
Přispěvatelé: Laboratoire de Mathématiques d'Orsay (LM-Orsay), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Institut Élie Cartan de Lorraine (IECL), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics [Irvine], University of California [Irvine] (UCI), University of California-University of California, ANR-13-JS01-0006,iproblems,Problèmes Inverses(2013), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), University of California [Irvine] (UC Irvine), University of California (UC)-University of California (UC)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: International Mathematics Research Notices
International Mathematics Research Notices, Oxford University Press (OUP), 2018, 2018 (16), pp.5178-5218. ⟨10.1093/imrn/rnx042⟩
International Mathematics Research Notices, 2018, 2018 (16), pp.5178-5218. ⟨10.1093/imrn/rnx042⟩
ISSN: 1073-7928
1687-0247
DOI: 10.1093/imrn/rnx042⟩
Popis: International audience; We prove uniform $L^p$ resolvent estimates for the stationary damped wave operator. The uniform $L^p$ resolvent estimates for the Laplace operator on a compact smooth Riemannian manifold without boundary were first established by Dos Santos Ferreira-Kenig-Salo and advanced further by Bourgain-Shao-Sogge-Yao. Here we provide an alternative proof relying on the techniques of semiclassical Strichartz estimates. This approach allows us also to handle non-self-adjoint perturbations of the Laplacian and embeds very naturally in the semiclassical spectral analysis framework.
Databáze: OpenAIRE