Microstructural plasticity in nociceptive pathways after spinal cord injury
Autor: | Vince D. Calhoun, Michela Azzarito, Patrick Freund, Karl J. Friston, Nikolaus Weiskopf, John Ashburner, Jan Rosner, Claudia Blaiotta, Katja Wiech, Gabriel Ziegler, Sreenath Pruthviraj Kyathanahally |
---|---|
Přispěvatelé: | University of Zurich, Freund, Patrick |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Thalamus
610 Medicine & health 03 medical and health sciences 2738 Psychiatry and Mental Health 0302 clinical medicine medicine ddc:610 Spinal Cord Injury Spinal cord injury Anterior cingulate cortex 030304 developmental biology 0303 health sciences business.industry Spinal cord medicine.disease 2746 Surgery Dorsolateral prefrontal cortex Psychiatry and Mental health medicine.anatomical_structure Nociception 2728 Neurology (clinical) Neuropathic pain Surgery 10046 Balgrist University Hospital Swiss Spinal Cord Injury Center Neurology (clinical) Primary motor cortex business 610 Medizin und Gesundheit Neuroscience 030217 neurology & neurosurgery |
Zdroj: | Journal of Neurology, Neurosurgery & Psychiatry Journal of Neurology, Neurosurgery, and Psychiatry Kyathanahally, Sreenath P; Azzarito, Michela; Rosner, Jan; Calhoun, Vince D; Blaiotta, Claudia; Ashburner, John; Weiskopf, Nikolaus; Wiech, Katja; Friston, Karl; Ziegler, Gabriel; Freund, Patrick (2021). Microstructural plasticity in nociceptive pathways after spinal cord injury. (In Press). Journal of neurology, neurosurgery, and psychiatry, 92(8), pp. 863-871. BMJ Publishing Group 10.1136/jnnp-2020-325580 Journal of neurology, neurosurgery, and psychiatry 92(8), 863-871 (2021). doi:10.1136/jnnp-2020-325580 |
DOI: | 10.1136/jnnp-2020-325580 |
Popis: | ObjectiveTo track the interplay between (micro-) structural changes along the trajectories of nociceptive pathways and its relation to the presence and intensity of neuropathic pain (NP) after spinal cord injury (SCI).MethodsA quantitative neuroimaging approach employing a multiparametric mapping protocol was used, providing indirect measures of myelination (via contrasts such as magnetisation transfer (MT) saturation, longitudinal relaxation (R1)) and iron content (via effective transverse relaxation rate (R2*)) was used to track microstructural changes within nociceptive pathways. In order to characterise concurrent changes along the entire neuroaxis, a combined brain and spinal cord template embedded in the statistical parametric mapping framework was used. Multivariate source-based morphometry was performed to identify naturally grouped patterns of structural variation between individuals with and without NP after SCI.ResultsIn individuals with NP, lower R1 and MT values are evident in the primary motor cortex and dorsolateral prefrontal cortex, while increases in R2* are evident in the cervical cord, periaqueductal grey (PAG), thalamus and anterior cingulate cortex when compared with pain-free individuals. Lower R1 values in the PAG and greater R2* values in the cervical cord are associated with NP intensity.ConclusionsThe degree of microstructural changes across ascending and descending nociceptive pathways is critically implicated in the maintenance of NP. Tracking maladaptive plasticity unravels the intimate relationships between neurodegenerative and compensatory processes in NP states and may facilitate patient monitoring during therapeutic trials related to pain and neuroregeneration. |
Databáze: | OpenAIRE |
Externí odkaz: |