Breaking Symmetries in Data-Driven Phase Retrieval

Autor: Zhong Zhuang, Ju Sun, Kshitij Tayal, Raunak Manekar, Chieh-Hsin Lai, Vipin Kumar
Rok vydání: 2021
Předmět:
Zdroj: Experts@Minnesota
DOI: 10.1364/cosi.2021.cth4a.4
Popis: The existing iterative and data-driven methods fail to solve phase retrieval due to the intrinsic problem symmetries. We propose two end-to-end learning methods that break the barrier and work in a new regime.
Databáze: OpenAIRE