Pathophysiology of Paroxysmal and Persistent Atrial Fibrillation
Autor: | Prashanthan Sanders, Rajiv Mahajan, Jonathan M. Kalman, Ulrich Schotten, Dennis H. Lau, Dominik Linz |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Pulmonary and Respiratory Medicine
Tachycardia medicine.medical_specialty medicine.medical_treatment Catheter ablation 030204 cardiovascular system & hematology STRUCTURAL HEART-DISEASE Electrocardiography 03 medical and health sciences 0302 clinical medicine LOCALIZED SOURCES Heart Conduction System Fibrosis Internal medicine OBSTRUCTIVE SLEEP-APNEA MAGNETIC-RESONANCE Medicine Heart Atria 030212 general & internal medicine Tachycardia Paroxysmal TRANSMURAL CONDUCTION CATHETER ABLATION medicine.diagnostic_test business.industry OVINE MODEL Remodelling Atrial fibrillation Magnetic resonance imaging HUMANS Atrial Remodeling Ectopic foci Atrial fibrosis medicine.disease Mapping Heart failure Rotors Cardiology CONVENTIONAL ABLATION Electrical conduction system of the heart medicine.symptom Cardiology and Cardiovascular Medicine business FOLLOW-UP |
Zdroj: | Heart Lung and Circulation. 26(9):887-893 |
ISSN: | 1443-9506 |
Popis: | Recent advances in our understanding of the mechanisms underlying atrial fibrillation (AF) have further underscored the complex pathophysiological basis of the arrhythmia. It has become apparent that the current clinical classification of AF does not reflect the severity of the underlying atrial disease. Atrial fibrosis has been identified as the key structural change in different substrates that are responsible for the perpetuation of AF. Three-dimensional electroanatomical mapping and late gadolinium-enhanced magnetic resonance imaging are novel modalities that can be used to facilitate identification and quantitation of atrial fibrosis for improved delineation of the AF substrate. Advances in AF mapping technology using endocardial 'panaromic' basket-type catheter and non-invasive body surface electrodes have facilitated the identification of two major arrhythmic mechanisms of interest, namely rotational ('rotors') and ectopic focal activations ('foci'). Ongoing research on these potential drivers of AF may provide guidance to more mechanistic based therapies to improve outcomes for this complex arrhythmia in the future. Here, we aim to review the differences in AF substrate in those with paroxysmal and more persistent forms of the arrhythmia by evaluating fibrosis, rotors and foci, towards improved AF substrate classification and individualised substrate based therapies. |
Databáze: | OpenAIRE |
Externí odkaz: |