Alienation of Drygas’ and Cauchy’s Functional Equations
Autor: | B. Fadli, Youssef Aissi, Driss Zeglami |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
exponential cauchy equation General Mathematics 010102 general mathematics Cauchy distribution Alienation 39b42 39b32 010103 numerical & computational mathematics 01 natural sciences drygas’ functional equation logarithmic cauchy equation alienation 39b72 QA1-939 0101 mathematics Mathematics additive cauchy equation |
Zdroj: | Annales Mathematicae Silesianae, Vol 35, Iss 2, Pp 131-148 (2021) |
ISSN: | 2391-4238 |
Popis: | Inspired by the papers [2, 10] we will study, on 2-divisible groups that need not be abelian, the alienation problem between Drygas’ and the exponential Cauchy functional equations, which is expressed by the equation f ( x + y ) + g ( x + y ) g ( x - y ) = f ( x ) f ( y ) + 2 g ( x ) + g ( y ) + g ( - y ) . f\left( {x + y} \right) + g\left( {x + y} \right)g\left( {x - y} \right) = f\left( x \right)f\left( y \right) + 2g\left( x \right) + g\left( y \right) + g\left( { - y} \right). We also consider an analogous problem for Drygas’ and the additive Cauchy functional equations as well as for Drygas’ and the logarithmic Cauchy functional equations. Interesting consequences of these results are presented. |
Databáze: | OpenAIRE |
Externí odkaz: |