Alienation of Drygas’ and Cauchy’s Functional Equations

Autor: B. Fadli, Youssef Aissi, Driss Zeglami
Rok vydání: 2021
Předmět:
Zdroj: Annales Mathematicae Silesianae, Vol 35, Iss 2, Pp 131-148 (2021)
ISSN: 2391-4238
Popis: Inspired by the papers [2, 10] we will study, on 2-divisible groups that need not be abelian, the alienation problem between Drygas’ and the exponential Cauchy functional equations, which is expressed by the equation f ( x + y ) + g ( x + y ) g ( x - y ) = f ( x ) f ( y ) + 2 g ( x ) + g ( y ) + g ( - y ) . f\left( {x + y} \right) + g\left( {x + y} \right)g\left( {x - y} \right) = f\left( x \right)f\left( y \right) + 2g\left( x \right) + g\left( y \right) + g\left( { - y} \right). We also consider an analogous problem for Drygas’ and the additive Cauchy functional equations as well as for Drygas’ and the logarithmic Cauchy functional equations. Interesting consequences of these results are presented.
Databáze: OpenAIRE