A CFAR algorithm for anomaly detection and discrimination in Hyperspectral Images

Autor: Mireille Guillaume, Alexis Huck
Přispěvatelé: Institut FRESNEL (FRESNEL), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2008
Předmět:
Zdroj: Proceedings of IEEE International conference on Image Processing
IEEE International Conference on Image Processing October 12-15, ICIP 2008
IEEE International Conference on Image Processing October 12-15, ICIP 2008, Oct 2008, San Diego, United States. pp.1868-1871, ⟨10.1109/ICIP.2008.4712143⟩
ICIP
DOI: 10.1109/ICIP.2008.4712143⟩
Popis: International audience; This paper proposes an anomaly detection algorithm for hyperspectral images. It is unsupervised (the researched spectra are not required a priori), discriminates the anomalies according to their spectra and has a Constant False Alarm Rate (CFAR). The main specificity of this algorithm is to combine these three assets rather than make a tradeoff which is generally necessary with existing methods. It is based on a physically convenient probabilistic model of the FastICA generated independent components. We compare it with the Adaptive Cosine/Coherence Estimator (a reference supervised target detection algorithm) on a real HYDICE dataset.
Databáze: OpenAIRE