A Class of Hausdorff–Berezin Operators on the Unit Disc
Autor: | Alexey Karapetyants, Stefan Samko, Kehe Zhu |
---|---|
Rok vydání: | 2019 |
Předmět: |
Invariant kernel
Haar measure Algebraic properties Pure mathematics Boundedness Mobius group Applied Mathematics 010102 general mathematics Hausdorff space Hardy-spaces Operator theory Bergman kernel 01 natural sciences Berezin transform Computational Mathematics Hausdorff operators Computational Theory and Mathematics 0103 physical sciences Domains 010307 mathematical physics 0101 mathematics Invariant (mathematics) Mathematics |
Zdroj: | Repositório Científico de Acesso Aberto de Portugal Repositório Científico de Acesso Aberto de Portugal (RCAAP) instacron:RCAAP |
ISSN: | 1661-8262 1661-8254 |
Popis: | We introduce and study a class of Hausdorff-Berezin operators on the unit disc based on Haar measure (that is, the Mobius invariant area measure). We discuss certain algebraic properties of these operators and obtain boundedness conditions for them. We also reformulate the obtained results in terms of ordinary area measure. Fulbright Research Scholarship program J. William Fulbright Research Scholarship Program [PS00267032] Russian Foundation for Fundamental ResearchRussian Foundation for Basic Research (RFBR) [18-01-00094] National Natural Science Foundation of ChinaNational Natural Science Foundation of China [11720101003] STU Scientific Research Foundation for Talents [NTF17009] info:eu-repo/semantics/publishedVersion |
Databáze: | OpenAIRE |
Externí odkaz: |