Unusual expression of tension of a massless cable with application to the oscillations of a mass suspended to a cable with a variable length
Autor: | Louis Jezequel, Mathieu Babaz, Claude-Henri Lamarque, Patrick Perrard |
---|---|
Přispěvatelé: | Laboratoire de Tribologie et Dynamique des Systèmes (LTDS), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Ecole Nationale d'Ingénieurs de Saint Etienne-Centre National de la Recherche Scientifique (CNRS), Université de Lyon |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Physics
[PHYS.MECA.VIBR]Physics [physics]/Mechanics [physics]/Vibrations [physics.class-ph] Acoustics and Ultrasonics Basis (linear algebra) Continuum mechanics Tension (physics) Mechanical Engineering Dynamics (mechanics) 02 engineering and technology Mechanics Expression (computer science) Condensed Matter Physics 01 natural sciences Massless particle Nonlinear system 020303 mechanical engineering & transports 0203 mechanical engineering Mechanics of Materials Spring (device) 0103 physical sciences 010301 acoustics |
Zdroj: | Journal of Sound and Vibration Journal of Sound and Vibration, Elsevier, 2016, ⟨10.1016/j.jsv.2015.10.020⟩ |
ISSN: | 0022-460X 1095-8568 |
DOI: | 10.1016/j.jsv.2015.10.020⟩ |
Popis: | International audience; A new approach of cables’ dynamics is presented in this paper. It is based on the exact expression of tension coming from continuum mechanics, while the previous elastic models of cables in open literature consider an approximation of small strain which reduces the cable to a linear spring. The equations of a mass suspended to a massless cable are derived on the basis of this new formulation. The problem is studied and numerically calculated for one and two degrees of freedom. A comparison with the classical approach and a nonlinear analysis are presented. |
Databáze: | OpenAIRE |
Externí odkaz: |