Free minimal actions of solvable Lie groups which are not affable
Autor: | Matilde Martínez, Fernando Alcalde Cuesta, Álvaro Lozano Rojo |
---|---|
Rok vydání: | 2021 |
Předmět: |
Mathematics::Dynamical Systems
Cayley graph Applied Mathematics General Mathematics Mathematics::General Topology Lie group Dynamical Systems (math.DS) Combinatorics Mathematics::Logic Solvable group FOS: Mathematics Uncountable set Mathematics - Dynamical Systems Primary 57R30 Secondary 37A20 37B50 Mathematics |
Zdroj: | Proceedings of the American Mathematical Society. 149:2679-2691 |
ISSN: | 1088-6826 0002-9939 |
DOI: | 10.1090/proc/15365 |
Popis: | We construct an uncountable family of transversely Cantor laminations of compact spaces defined by free minimal actions of solvable groups, which are not affable and whose orbits are not quasi-isometric to Cayley graphs. 12 pages, 3 figures, to appear in Proceedings of the American Mathematical Society |
Databáze: | OpenAIRE |
Externí odkaz: |