Pythagorean-hodograph ovals of constant width

Autor: Luc Biard, Walter Herzog, Rachid Ait-Haddou
Přispěvatelé: Laboratory of Human Performance, University of Calgary, Modélisation Géométrique & Multirésolution pour l'Image (MGMI), Laboratoire Jean Kuntzmann (LJK), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2008
Předmět:
Zdroj: Computer Aided Geometric Design
Computer Aided Geometric Design, Elsevier, 2008, 25 (4-5), pp.258-273. ⟨10.1016/j.cagd.2007.10.008⟩
ISSN: 0167-8396
DOI: 10.1016/j.cagd.2007.10.008
Popis: Special Issue: Pythagorean-Hodograph Curves and Related Topics; International audience; A constructive geometric approach to rational ovals and rosettes of constant width formed by piecewise rational PH curves is presented. We propose two main constructions. The first construction, models with rational PH curves of algebraic class 3 (T-quartics) and is based on the fact that T-quartics are exactly the involutes of T-cubic curves. The second construction, models with rational PH curves of algebraic class m>4 and is based on the dual control structure of offsets of rational PH curves.
Databáze: OpenAIRE