Oxidative stability and nutritional quality of poultry by-product meal: An approach from the raw material to the finished product
Autor: | Ricardo Souza Vasconcellos, Marcelino Bortolo, Mayara Uana da Silva, Priscila Martins Ribeiro, Ferenc Istvan Bánkuti, Leonir Bueno Ribeiro, Joyce Sato, Jeice Munaretto Silva |
---|---|
Přispěvatelé: | State University of Maringá, Universidade Estadual Paulista (Unesp), Nutrisurance Division |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
chemistry.chemical_classification
0303 health sciences Meal Water activity 030309 nutrition & dietetics fungi 0402 animal and dairy science 04 agricultural and veterinary sciences Nutritional quality Raw material 040201 dairy & animal science Rendering 03 medical and health sciences Rendering (animal products) Ingredient chemistry Shelf-Life Animal protein source Poultry by-product meal Animal Science and Zoology Organic matter Food science Animal nutrition Oxidative stability |
Zdroj: | Scopus Repositório Institucional da UNESP Universidade Estadual Paulista (UNESP) instacron:UNESP |
Popis: | Made available in DSpace on 2019-10-06T15:50:36Z (GMT). No. of bitstreams: 0 Previous issue date: 2019-08-01 The current study aimed to investigate the relationship between oxidative stability and in vitro digestibility in the rendering process of poultry by-product meal (PBM). One hundred PBM batches were sampled from two integrated rendering plants (n = 50) and two independent rendering plants (n = 50). The parameters related to raw material, processing and finished product (PBM) were considered independent variables. In the PBM samples, the in vitro digestibility of organic matter (IVDOM) and the oxidative stability, measured as induction period (IP) by an oxygen bomb, were determined. These data were considered dependent variables for multivariate statistical analyses. Data from the independent variables were submitted to Exploratory Factorial Analysis (EFA). Subsequently, a hierarchical cluster was performed for the dependent variables. For oxidative stability, the samples were grouped into three clusters according to IP as follows: low (89 ± 12.2 min), medium (127 ± 9.7 min) and high (180 ± 13.3 min) (P = 0.001). Among the principal components (PC), the moisture (P = 0.009) and water activity (P = 0.039) were the factors related to the PBM that most influenced oxidative stability. The moisture content of 25 ± 12.4 g/kg and water activity of 0.24 ± 0.11 resulted in the lowest oxidative stability, indicating that excessive drying leads to less stable PBM. Oxidative stability was also influenced by synthetic antioxidants (P = 0.036). PBM samples were grouped into four clusters based on their in vitro digestibility of organic matter (IVDOM): very low (723 ± 14.6 g/kg), low (759 ± 9.7 g/kg), moderate (803 ± 3.3 g/kg), and high (848 ± 15.8 g/kg). Lower average (101 ± 2.05 °C, P = 0.022) and maximum (106 ± 1.02 °C; P = 0.004) processing temperatures led to higher PBM digestibility. Time to processing and rendering conditions directly affected PBM quality. Better standardization of those factors can favor the production of a nutritionally more suitable ingredient with longer oxidative stability. Department of Animal Sciences State University of Maringá School of Agricultural and Veterinary Sciences São Paulo State University (UNESP) R&D Manager Nutrisurance Division, Kemin Industries, Inc. School of Agricultural and Veterinary Sciences São Paulo State University (UNESP) |
Databáze: | OpenAIRE |
Externí odkaz: |