Long-lasting neutralizing antibody responses in SARS-CoV-2 seropositive individuals are robustly boosted by immunization with the CoronaVac and BNT162b2 vaccines
Autor: | Maria Jose Avendano, Jorge Levican, Rohit K. Jangra, Shirin Strohmeier, Nicolas A. Muena, Denise Haslwanter, Estefany Poblete, Arnoldo Riquelme, Tamara García-Salum, Eileen F. Serrano, Nicole D. Tischler, Kartik Chandran, Erick Salinas, Catalina Pardo-Roa, Rafael A. Medina, Gonzalo Valenzuela, Florian Krammer, Leonardo I. Almonacid, Maria Eugenia Dieterle, Claudia González |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Long lasting
COVID-19 Vaccines Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Population Antibodies Viral Article neutralizing antibody persistence medicine Humans Neutralizing antibody education B cell BNT162 Vaccine education.field_of_study biology business.industry SARS-CoV-2 COVID-19 Convalescence Antibodies Neutralizing SARS-CoV-2 vaccines Vaccination Titer medicine.anatomical_structure Immunization Immunology biology.protein serological response business |
Zdroj: | medRxiv article-version (status) pre article-version (number) 1 |
Popis: | A major challenge of the SARS-CoV-2 pandemic is to better define "protective thresholds" to guide the global response. We aimed to characterize the longitudinal dynamics of the antibody responses in naturally infected individuals in Chile and compared them to humoral responses induced after immunization with CoronaVac-based on an inactivated whole virus -or the BNT162b2- based on mRNA-vaccines. We also contrasted them with the respective effectiveness and efficacy data available for both vaccines.We determined and compared the longitudinal neutralizing (nAb) and anti-nucleocapsid (anti-N) antibody responses of 74 COVID-19 individuals (37 outpatient and 37 hospitalized) during the acute disease and convalescence. We also assessed the antibody boosting of 36 of these individuals who were immunized after convalescence with either the CoronaVac (n = 30) or the BNT162b2 (n = 6) vaccines. Antibody titres were also measured for 50 naïve individuals immunized with two doses of CoronaVac (n = 35) or BNT162b2 (n = 15) vaccines. The neutralizing level after vaccination was compared to those of convalescent individuals and the predicted efficacy was estimated.SARS-CoV-2 infection induced robust nAb and anti-N antibody responses lasting9 months, but showing a rapid nAb decay. After convalescence, nAb titres were significantly boosted by vaccination with CoronaVac or BNT162b2. In naïve individuals, the calculated mean titre induced by two doses of CoronaVac or BNT162b2 was 0·2 times and 5.2 times, respectively, that of convalescent individuals, which has been proposed as threshold of protection. CoronaVac induced no or only modest anti-N antibody responses. Using two proposed logistic models, the predicted efficacy of BNT162b2 was estimated at 97%, in close agreement with phase 3 efficacy studies, while for CoronaVac it was ∼50% corresponding to the lowest range of clinical trials and below the real-life data from Chile (from February 2 through May 1, 2021 during the predominant circulation of the Gamma variant), where the estimated vaccine effectiveness to prevent COVID-19 was 62·8-64·6%.The decay of nAbs titres in previously infected individuals over time indicates that vaccination is needed to boost humoral memory responses. Immunization of naïve individuals with two doses of CoronaVac induced nAbs titres that were significantly lower to that of convalescent patients, and similar to vaccination with one dose of BTN162b2. The real life effectiveness for CoronaVac in Chile was higher than estimated; indicating that lower titres and additional cellular immune responses induced by CoronaVac might afford protection in a highly immunized population. Nevertheless, the lower nAb titre induced by two doses of CoronaVac as compared to the BTN162b2 vaccine in naïve individuals, highlights the need of booster immunizations over time to maintain protective levels of antibody, particularly with the emergence of new SARS-CoV-2 variants.FONDECYT 1161971, 1212023, 1181799, FONDECYT Postdoctorado 3190706 and 3190648, ANID Becas/Doctorado Nacional 21212258, PIA ACT 1408, CONICYT REDES180170, Centro CienciaVida, FB210008, Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia grants from the Agencia Nacional de Investigación y Desarrollo (ANID) of Chile; NIH-NIAD grants U19AI135972, R01AI132633 and contracts HHSN272201400008C and 75N93019C00051; the JPB Foundation, the Open Philanthropy Project grant 2020-215611 (5384); and by anonymous donors. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. |
Databáze: | OpenAIRE |
Externí odkaz: |