Testing Nonlinearity with Rényi and Tsallis Mutual Information with an Application in the EKC Hypothesis
Autor: | Elif Tuna, Atıf Evren, Erhan Ustaoğlu, Büşra Şahin, Zehra Zeynep Şahinbaşoğlu |
---|---|
Přispěvatelé: | TUNA E., EVREN A. A., USTAOĞLU E., Şahin B., Şahinbaşoğlu Z. Z. |
Rok vydání: | 2022 |
Předmět: |
Information Security and Reliability
Physics and Astronomy (miscellaneous) Genel Fizik Sinyal İşleme Temel Bilimler (SCI) Mühendislik ENGINEERING General Physics and Astronomy Astronomi ve Astrofizik BİLGİSAYAR BİLİMİ BİLGİ SİSTEMLERİ Information Systems Communication and Control Engineering Tsallis mutual information COMPUTER SCIENCE INFORMATION SYSTEMS ASTRONOMY & ASTROPHYSICS SPACE SCIENCE Mathematical Physics ENGINEERING ELECTRICAL & ELECTRONIC Computer Sciences Elektrik ve Elektronik Mühendisliği Temel Bilimler Physics Bilgi Güvenliği ve Güvenilirliği FİZİK MATEMATİK nonlinearity Fizik ve Astronomi (çeşitli) Bilgi sistemi PHYSICS MATHEMATICAL Rényi mutual information Natural Sciences (SCI) Physical Sciences Engineering and Technology Bilgisayar Bilimi Bilgi Sistemleri Haberleşme ve Kontrol Mühendisliği Natural Sciences Information Systems General Physics Uzay bilimi Fizik ASTRONOMİ VE ASTROFİZİK Bilgisayar Bilimleri Electrical and Electronic Engineering Engineering Computing & Technology (ENG) EKC hypothesis Astronomy and Astrophysics Mühendislik Bilişim ve Teknoloji (ENG) COMPUTER SCIENCE Matematiksel Fizik Fizik Bilimleri Signal Processing MÜHENDİSLİK ELEKTRİK VE ELEKTRONİK Mühendislik ve Teknoloji |
Zdroj: | Entropy; Volume 25; Issue 1; Pages: 79 |
ISSN: | 1099-4300 |
DOI: | 10.3390/e25010079 |
Popis: | © 2022 by the authors.The nature of dependence between random variables has always been the subject of many statistical problems for over a century. Yet today, there is a great deal of research on this topic, especially focusing on the analysis of nonlinearity. Shannon mutual information has been considered to be the most comprehensive measure of dependence for evaluating total dependence, and several methods have been suggested for discerning the linear and nonlinear components of dependence between two variables. We, in this study, propose employing the Rényi and Tsallis mutual information measures for measuring total dependence because of their parametric nature. We first use a residual analysis in order to remove linear dependence between the variables, and then we compare the Rényi and Tsallis mutual information measures of the original data with that the lacking linear component to determine the degree of nonlinearity. A comparison against the values of the Shannon mutual information measure is also provided. Finally, we apply our method to the environmental Kuznets curve (EKC) and demonstrate the validity of the EKC hypothesis for Eastern Asian and Asia-Pacific countries. |
Databáze: | OpenAIRE |
Externí odkaz: |