Probability theory in statistical physics, percolation, and other random topics
Autor: | Daniel Stein, Federico Camia |
---|---|
Přispěvatelé: | Sidoravicius, Vladas, Mathematics |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Fortuin–Kasteleyn
Normal fluctuations Pure states SLE Brownian web FK percolation Percolation theory Lee–Yang theorem Probability theory Critical exponents Spin glasses Metastate Statistical physics Edwards–Anderson model Continuum scaling limit Mathematics Random cluster representation Nature vs. nurture deBruijn–Newman constant Continuum (measurement) Percolation First passage percolation Statistical mechanics Replica symmetry breaking Ground states Deep quench CLE Ising field theory Riemann hypothesis |
Zdroj: | Camia, F & Stein, D L 2019, Probability theory in statistical physics, percolation, and other random topics : The work of C. Newman . in V Sidoravicius (ed.), Sojourns in Probability Theory and Statistical Physics-I : Spin Glasses and Statistical Mechanics, A Festschrift for Charles M. Newman . Springer Proceedings in Mathematics and Statistics, vol. 298, Springer, pp. 1-38, International Conference on Probability Theory and Statistical Physics, 2016, Shanghai, China, 25/03/16 . https://doi.org/10.1007/978-981-15-0294-1_1 Sojourns in Probability Theory and Statistical Physics-I: Spin Glasses and Statistical Mechanics, A Festschrift for Charles M. Newman, 1-38 STARTPAGE=1;ENDPAGE=38;TITLE=Sojourns in Probability Theory and Statistical Physics-I Springer Proceedings in Mathematics & Statistics ISBN: 9789811502934 |
ISSN: | 2194-1009 |
DOI: | 10.1007/978-981-15-0294-1_1 |
Popis: | In the introduction to this volume, we discuss some of the highlights of the research career of Chuck Newman. This introduction is divided into two main sections, the first covering Chuck’s work in statistical mechanics and the second his work in percolation theory, continuum scaling limits, and related topics. |
Databáze: | OpenAIRE |
Externí odkaz: |