Carbon Nanotube Based Robust and Flexible Solid-State Supercapacitor
Autor: | Milinda Wasala, Poopalasingam Sivakumar, Thushani De Silva, Robinson Karunanithy, Dinuka H. Gallaba, Aldo Migone, Rana Alkhaldi, Saikat Talapatra, Cole Damery, Prasanna Patil |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | ACS Applied Materials & Interfaces. 13:56004-56013 |
ISSN: | 1944-8252 1944-8244 |
DOI: | 10.1021/acsami.1c12551 |
Popis: | All solid-state flexible electrochemical double-layer capacitors (EDLCs) are crucial for providing energy options in a variety of applications, ranging from wearable electronics to bendable micro/nanotechnology. Here, we report on the development of robust EDLCs using aligned multiwalled carbon nanotubes (MWCNTs) grown directly on thin metal foils embedded in a poly(vinyl alcohol)/phosphoric acid (PVA/H3PO4) polymer gel. The thin metal substrate holding the aligned MWCNT assembly provides mechanical robustness and the PVA/H3PO4 polymer gel, functioning both as the electrolyte as well as the separator, provides sufficient structural flexibility, without any loss of charge storage capacity under flexed conditions. The performance stability of these devices was verified by testing them under straight and bent formations. A high value of the areal specific capacitance (CSP) of ∼14.5 mF cm-2 with an energy density of ∼1 μW h cm-2 can be obtained in these devices. These values are significantly higher (in some cases, orders of magnitude) than several graphene as well as single-walled nanotube-based EDLC's utilizing similar electrolytes. We further show that these devices can withstand multiple (∼2500) mechanical bending cycles, without losing their energy storage capacities and are functional within the temperature range of 20 to 70 °C. Several strategies for enhancing the capacitive charge storage, such as physically stacking (in parallel) individual devices, or postproduction thermal annealing of electrodes, are also demonstrated. These findings demonstrated in this article provide tremendous impetus toward the realization of robust, stackable, and flexible all solid-state supercapacitors. |
Databáze: | OpenAIRE |
Externí odkaz: |