Unique continuation from infinity in asympotically Anti-de Sitter spacetimes II: Non-static boundaries

Autor: Gustav Holzegel, Arick Shao
Přispěvatelé: Commission of the European Communities
Rok vydání: 2016
Předmět:
Class (set theory)
media_common.quotation_subject
General Mathematics
Mathematics
Applied

Boundary (topology)
FOS: Physical sciences
Conformal map
General Relativity and Quantum Cosmology (gr-qc)
83C99 (General Relativity)
01 natural sciences
General Relativity and Quantum Cosmology
0101 Pure Mathematics
symbols.namesake
Continuation
Mathematics - Analysis of PDEs
0102 Applied Mathematics
0103 physical sciences
FOS: Mathematics
0101 mathematics
35L05 (Partial Differential Equations)
Klein–Gordon equation
Mathematics
Mathematical physics
media_common
Science & Technology
010308 nuclear & particles physics
Applied Mathematics
010102 general mathematics
Infinity
Carleman estimates
unique continuation
Anti de Sitter
Nonlinear system
35A02
35Q75
83C30
35L05

Physical Sciences
symbols
Klein-Gordon equation
Anti-de Sitter space
Analysis
Analysis of PDEs (math.AP)
DOI: 10.48550/arxiv.1608.07521
Popis: We generalize our unique continuation results recently established for a class of linear and nonlinear wave equations $\Box_g \phi + \sigma \phi = \mathcal{G} ( \phi, \partial \phi )$ on asymptotically anti-de Sitter (aAdS) spacetimes to aAdS spacetimes admitting non-static boundary metrics. The new Carleman estimates established in this setting constitute an essential ingredient in proving unique continuation results for the full nonlinear Einstein equations, which will be addressed in forthcoming papers. Key to the proof is a new geometrically adapted construction of foliations of pseudoconvex hypersurfaces near the conformal boundary.
Comment: 45 pages. Newest version incorporated changes from referee comments and fixed minor typos
Databáze: OpenAIRE