Origin of symbiotic gut spirochetes as key players in the nutrition of termites

Autor: Gaku Tokuda
Rok vydání: 2021
Předmět:
Zdroj: Environmental Microbiology. 23:4092-4097
ISSN: 1462-2920
1462-2912
DOI: 10.1111/1462-2920.15625
Popis: Termites harbour symbiotic spirochetes in their hindguts, which have long been considered treponemes, although they represent separate lines of descent from known species of Treponema. 'Termite gut treponemes' have a mutualistic relationship with the host termites with their physiological properties including CO2 -reductive acetogenesis, from which the resulting acetate fulfils most of the respiratory requirement of the host. Song and co-workers showed that a spirochetal isolate (strain RmG30) from a Madeira cockroach represents the earliest branching lineage of extremely diverse termite (Treponema) cluster I and was a simple homolactic fermenter, suggesting that CO2 -reductive acetogenesis exhibited by some members of termite cluster I originated via horizontal gene transfer. Phylogenomic and 16S rRNA sequence-based phylogenetic analyses indicated a deeply-branched sister clade containing termite cluster I was distinguishable as a family-level lineage. In this context, a new family, 'Termitinemataceae' has been proposed for this clade. Strain RmG30 has been designated as the type strain of Breznakiella homolactica gen. nov. sp. nov. named after John A. Breznak, an American microbiologist distinguished in termite gut microbiology. The study has posed important questions for the future, including the actual roles of the termite spirochetes in each termite lineage and the evolutionary process of their physiological properties.
Databáze: OpenAIRE