Towards the next generation models of the rumen microbiome for enhancing predictive power and guiding sustainable production strategies

Autor: Rafael Muñoz-Tamayo, Mohsen Davoudkhani, Ibrahim Fakih, Carlos Eduardo Robles-Rodriguez, Francesco Rubino, Christopher J. Creevey, Evelyne Forano
Přispěvatelé: Modélisation Systémique Appliquée aux Ruminants (MoSAR), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Microbiologie Environnement Digestif Santé (MEDIS), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Clermont Auvergne (UCA), Toulouse Biotechnology Institute (TBI), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Queen's University [Belfast] (QUB)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Popis: The rumen ecosystem harbours a galaxy of microbes working in synthrophy to carry out a metabolic cascade of hydrolytic and fermentative reactions. This fermentation process allows ruminants to harvest nutrients from a wide range of feedstuff otherwise inaccessible to the host. The interconnection between the ruminant and its rumen microbiota shapes key animal phenotypes such as feed efficiency and methane emissions and suggests the potential of reducing methane emissions and enhancing feed conversion into animal products by manipulating the rumen microbiota. Whilst significant technological progress in omics techniques has increased our knowledge of the rumen microbiota and its genome (microbiome), translating omics knowledge into effective microbial manipulation strategies remains a great challenge. This challenge can be addressed by modelling approaches integrating causality principles and thus going beyond current correlation basis approaches applied to analyse rumen microbial genomic data. However, existing rumen models are not yet adapted to capitalise on microbial genomic information. This gap between the rumen microbiota available omics data and the way microbial metabolism is represented in the existing rumen models needs to be filled to enhance rumen understanding and produce better predictive models with capabilities for guiding nutritional strategies. To fill this gap, integration of computational biology tools and mathematical modelling frameworks is needed to translate the information of the metabolic potential of the rumen microbes (inferred from their genomes) into a mathematical object. In this review, we discuss computational biology tools to analyse the rumen microbiome and two modelling approaches for the integration of microbial genomic information into dynamic models. The first modelling approach explores the theory of state observers to integrate microbial time series data into rumen fermentation models. The second approach is based on the genome-scale network reconstructions of rumen microbes. For a given microorganism, the network reconstruction produces a stoichiometry matrix of the metabolism. This matrix is the core of the so-called genome-scale metabolic models which can be exploited by a plethora of methods comprised within the constraint-based reconstruction and analysis (COBRA) approaches. We will discuss how these methods can be used to produce the next generation models of the rumen microbiome.
Databáze: OpenAIRE