Fast Low Frequency Fault Location and Section Identification Scheme for VSC-Based Multi-Terminal HVDC Systems

Autor: Seyed Hassan Ashrafi Niaki, Habib Panahi, Majid Sanaye-Pasand, Reza Zamani
Rok vydání: 2022
Předmět:
Zdroj: Panahi, H, Sanaye-Pasand, M, Ashrafi Niaki, S H & Zamani, R 2022, ' Fast Low Frequency Fault Location and Section Identification Scheme for VSC-Based Multi-Terminal HVDC Systems ', IEEE Transactions on Power Delivery, vol. 37, no. 3, pp. 2220-2229 . https://doi.org/10.1109/TPWRD.2021.3107513
ISSN: 1937-4208
0885-8977
Popis: Penetration of DC networks is rapidly increasing in modern power systems. As transient behavior of DC grids is different from that of AC ones, AC grid protection schemes might not be applicable to protect DC networks. Exact fault location is vital for protection of DC networks to reduce repair cost and achieve fast power recovery. This paper proposes a novel topology independent multi-terminal DC scheme to identify fault section and location for DC transmission systems. Voltage and current signals measured at the terminals are analyzed by the least squares error (LSE) algorithm. Then, the proposed scheme uses low frequency components of the signals to locate DC faults offline. Unlike some other methods, it does not require sophisticated sensors and hardware to capture very high frequency content of the signals. Hence, the proposed scheme can be implemented in practice without additional measuring infrastructure. The performance of the proposed scheme is evaluated under various fault conditions for different topologies of DC networks in both overhead lines and cables. Numerous simulations carried out demonstrate that the proposed scheme is quite accurate and provides excellent performance under different fault resistances, sections, and locations.
Databáze: OpenAIRE