Hydrocarbon Diffusion in Mesoporous Carbon Materials: Implications for Unconventional Gas Recovery

Autor: Daniel Ferry, Eric Chaput, Yann Magnin, Rachel Jorand, Jérémie Berthonneau, Olivier Grauby, Nicolas Chanut, Roland J.-M. Pellenq, Franz J. Ulm
Přispěvatelé: Laboratoire de Physique Théorique et Modélisation (LPTM - UMR 8089), Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Department of Civil and Environmental Engineering [Cambridge] (CEE), Massachusetts Institute of Technology (MIT), Matériaux divisés, interfaces, réactivité, électrochimie (MADIREL), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Institute for Applied Geophysics and Geothermal Energy, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: ACS Applied Nano Materials
ACS Applied Nano Materials, American Chemical Society, 2020, 3 (8), pp.7604-7610. ⟨10.1021/acsanm.0c01191⟩
ACS Applied Nano Materials, 2020, 3 (8), pp.7604-7610. ⟨10.1021/acsanm.0c01191⟩
ISSN: 2574-0970
Popis: International audience; Methane diffusion in micro- and mesopores of carbonaceous materials is dominated by molecular interactions with the pore walls. As a consequence, the fluid molecules are mainly in a diffusive regime and the laws of fluid mechanics are not directly applicable. A method called the “free volume theory” has been successfully used by different authors to study the diffusion of n-alkanes into microporous carbons. However, we show in this paper that such a method fails to describe the dynamical properties of methane in porous hosts presenting both micro- and mesopores. We further evidence that this theory is limited to structures whose pore diameters are lower than ∼3 nm. We then propose a simple scaling method based on the micro- and mesoporous volume fraction in order to predict diffusion coefficients. This method only requires the knowledge of (i) the host microporous volume fraction and (ii) the self-diffusion coefficient in micropores smaller than 3 nm, which can be obtained using the “free volume theory”, quasi-elastic neutron scattering experiments, or atomistic simulations.
Databáze: OpenAIRE