Quantization and isotropic submanifolds
Autor: | Louis Ioos |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Mathematics - Differential Geometry
Pure mathematics General Mathematics Automorphic form Semiclassical physics Context (language use) Manifold Quantization (physics) Differential Geometry (math.DG) Poincaré series FOS: Mathematics Mathematics::Symplectic Geometry Symplectic geometry Mathematics Bergman kernel |
Popis: | We introduce the notion of an isotropic quantum state associated with a Bohr-Sommerfeld manifold in the context of Berezin-Toeplitz quantization of general prequantized symplectic manifolds, and we study its semi-classical properties using the off-diagonal expansion of the Bergman kernel. We then show how these results extend to the case of non-compact orbifolds, and give an application to relative Poincar\'e series in the theory of automorphic forms. Comment: 45 pages, final version to appear in Michigan Mathematical Journal |
Databáze: | OpenAIRE |
Externí odkaz: |