Effect of marine environment on the behaviour of concrete structures reinforced by composite materials

Autor: Mardy Long, Abdelkader Haddi, Julien Szulc, Chafika Djelal
Přispěvatelé: Laboratoire de Génie Civil et Géo-Environnement (LGCgE) - ULR 4515 (LGCgE), Université d'Artois (UA)-Université de Lille-Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Lille Douai), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-JUNIA (JUNIA), Université d'Artois (UA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Mechanics & Industry
Mechanics & Industry, 2020, 21 (4), pp.407. ⟨10.1051/meca/2020033⟩
DOI: 10.1051/meca/2020033⟩
Popis: This study deals with experimental investigations of beam performances in a marine environment. Two kinds of concrete beams, unreinforced and reinforced with carbon plates and carbon rods, are being tested. The first one is stored in a laboratory, the other is exposed to a marine environment located in the north of France. After 12 months, all beams are tested via a four-point bending test in a laboratory. Results obtained have shown that beams stored in marine environment have a better behaviour than those stored in laboratory. It should be noted that no damage has occurred on these beams. However, we observe a significant increase of load of about 32% to 48% causing the first crack observed on the beams stored in marine environment compared to those stored in the laboratory. This means that beams in situ offer increased stiffness and a slight gain of failure loads. This may be due to the development of living organisms (in a marine environment) which acted as additional adhesive and sealing, providing a protection of concrete structures against damage.
Databáze: OpenAIRE