Small-Time Stabilization of Homogeneous Cascaded Systems with Application to the Unicycle and the Slider Examples
Autor: | Wilfrid Perruquetti, Jean-Michel Coron, Brigitte d'Andréa-Novel |
---|---|
Přispěvatelé: | Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Centrale Lille |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
Nonholonomic system
Control and Optimization time-varying feedback Applied Mathematics Nonholonomic kinematic Mobile robot Mechanical system homogeneity Control theory Backstepping Slider Control system small-time stabiliza- tion [INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering Homogeneity (physics) State (computer science) underactuated mechanical systems Mathematics |
Zdroj: | SIAM Journal on Control and Optimization SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2020, 58 (5), pp.2997-3018. ⟨10.1137/19M1285081⟩ SIAM Journal on Control and Optimization, 2020, 58 (5), pp.2997-3018. ⟨10.1137/19M1285081⟩ |
ISSN: | 0363-0129 1095-7138 |
DOI: | 10.1137/19M1285081⟩ |
Popis: | International audience; This paper concerns the small-time stabilization of some classes of mechanical systems which are not stabilizable by means of time-invariant continuous state feedback laws. This is the case of nonholonomic systems, an example being the "unicycle-like" mobile robot, or for underactuated mechanical systems, an example being the slider. Explicit time-varying feedback laws leading to small-time stabilization are constructed for these two control systems. The main tools are homogeneity, backstepping, and desingularization technics. |
Databáze: | OpenAIRE |
Externí odkaz: |