The nonconforming virtual element method for eigenvalue problems

Autor: Gianmarco Manzini, Giuseppe Vacca, Francesca Gardini
Přispěvatelé: Gardini, F, Manzini, G, Vacca, G
Rok vydání: 2018
Předmět:
DOI: 10.48550/arxiv.1802.02942
Popis: We analyse the nonconforming Virtual Element Method (VEM) for the approximation of elliptic eigenvalue problems. The nonconforming VEM allows to treat in the same formulation the two- and three-dimensional case. We present two possible formulations of the discrete problem, derived respectively by the nonstabilized and stabilized approximation of theL2-inner product, and we study the convergence properties of the corresponding discrete eigenvalue problem. The proposed schemes provide a correct approximation of the spectrum, in particular we prove optimal-order error estimates for the eigenfunctions and the usual double order of convergence of the eigenvalues. Finally we show a large set of numerical tests supporting the theoretical results, including a comparison with the conforming Virtual Element choice.
Databáze: OpenAIRE