Identification and characterization of agro-ecological infrastructures by remote sensing
Autor: | S. Duthoit, A. d'Abzac, Danielle Ducrot, Christophe Sausse, V. Chéret, C. Marais-Sicre |
---|---|
Přispěvatelé: | Centre d'études spatiales de la biosphère (CESBIO), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Dynamiques Forestières dans l'Espace Rural (DYNAFOR), Institut National de la Recherche Agronomique (INRA)-École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Dynamiques et écologie des paysages agriforestiers (DYNAFOR), École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Terres Inovia |
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: |
2. Zero hunger
geography.geographical_feature_category Erosion control Ecology [SDV]Life Sciences [q-bio] Image processing Image segmentation 15. Life on land image processing [SHS]Humanities and Social Sciences Identification (information) remote sensing Geography classification 13. Climate action Remote sensing (archaeology) Temporal resolution agro-ecological infrastructure Riparian forest mapping Image resolution Remote sensing biodiversity |
Zdroj: | Remote Sensing for Agriculture, Ecosystems, and Hydrology XVII Remote Sensing for Agriculture, Ecosystems, and Hydrology XVII, Sep 2015, Toulouse, France. ⟨10.1117/12.2195077⟩ |
Popis: | Agro-Ecological Infrastructures (AEIs) include many semi-natural habitats (hedgerows, grass strips, grasslands, thickets ) and play a key role in biodiversity preservation, water quality and erosion control. Indirect biodiversity indicators based on AEISs are used in many national and European public policies to analyze ecological processes. The identification of these landscape features is difficult and expensive and limits their use. Remote sensing has a great potential to solve this problem. In this study, we propose an operational tool for the identification and characterization of AEISs. The method is based on segmentation, contextual classification and fusion of temporal classifications. Experiments were carried out on various temporal and spatial resolution satellite data (20-m, 10-m, 5-m, 2.5-m, 50-cm), on three French regions southwest landscape (hilly, plain, wooded, cultivated), north (open-field) and Brittany (farmland closed by hedges). The results give a good idea of the potential of remote sensing image processing methods to map fine agro-ecological objects. At 20-m spatial resolution, only larger hedgerows and riparian forests are apparent. Classification results show that 10-m resolution is well suited for agricultural and AEIs applications, most hedges, forest edges, thickets can be detected. Results highlight the multi-temporal data importance. The future Sentinel satellites with a very high temporal resolution and a 10-m spatial resolution should be an answer to AEIs detection. 2.50-m resolution is more precise with more details. But treatments are more complicated. At 50-cm resolution, accuracy level of details is even higher; this amplifies the difficulties previously reported. The results obtained allow calculation of statistics and metrics describing landscape structures. Keyword: remote sensing, agro-ecological infrastructure, classification, image processing, mapping, biodiversity |
Databáze: | OpenAIRE |
Externí odkaz: |