Spin-polarized electric currents in diluted magnetic semiconductor heterostructures induced by terahertz and microwave radiation
Autor: | Dieter Schuh, Tomasz Wojtowicz, Peter Olbrich, Sergey Ganichev, Christina Zoth, S. V. Ivanov, C. Drexler, A. N. Semenov, Ya. V. Terent’ev, Vassilij Belkov, Peter Lutz, Ursula Wurstbauer, Dmitri R. Yakovlev, Sergey Tarasenko |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: |
73.21.Fg
72.25.Fe 78.67.De 73.63.Hs Zeeman effect Materials science Condensed matter physics Condensed Matter - Mesoscale and Nanoscale Physics Carrier scattering Terahertz radiation Scattering Condensed Matter::Other ddc:530 Relaxation (NMR) FOS: Physical sciences Magnetic semiconductor 530 Physik Condensed Matter Physics Condensed Matter::Mesoscopic Systems and Quantum Hall Effect Electronic Optical and Magnetic Materials Magnetic field symbols.namesake Condensed Matter::Materials Science Mesoscale and Nanoscale Physics (cond-mat.mes-hall) symbols Electric current |
Popis: | We report on the study of spin-polarized electric currents in diluted magnetic semiconductor (DMS) quantum wells subjected to an in-plane external magnetic field and illuminated by microwave or terahertz radiation. The effect is studied in (Cd,Mn)Te/(Cd,Mg)Te quantum wells (QWs) and (In,Ga)As/InAlAs:Mn QWs belonging to the well known II-VI and III-V DMS material systems, as well as, in heterovalent AlSb/InAs/(Zn,Mn)Te QWs which represent a promising combination of II-VI and III-V semiconductors. Experimental data and developed theory demonstrate that the photocurrent originates from a spin-dependent scattering of free carriers by static defects or phonons in the Drude absorption of radiation and subsequent relaxation of carriers. We show that in DMS structures the efficiency of the current generation is drastically enhanced compared to non-magnetic semiconductors. The enhancement is caused by the exchange interaction of carrier spins with localized spins of magnetic ions resulting, on the one hand, in the giant Zeeman spin-splitting, and, on the other hand, in the spin-dependent carrier scattering by localized Mn2+ ions polarized by an external magnetic field. 14 pages, 13 figures |
Databáze: | OpenAIRE |
Externí odkaz: |