Weierstrass gap sequences at points of curves on some rational surfaces

Autor: Akira Ohbuchi, Jiryo Komeda
Jazyk: angličtina
Rok vydání: 2012
Předmět:
Zdroj: Tsukuba J. Math. 36, no. 2 (2013), 217-233
ISSN: 0387-4982
Popis: Let $\tilde{C}$ be a non-singular plane curve of degree d ≥ 8 with an involution σ over an algebraically closed field of characteristic 0 and $\tilde{P}$ a point of $\tilde{C}$ fixed by σ. Let π : $\tilde{C}$ → C = $\tilde{C}$/$/\langle\sigma\rangle $be the double covering. We set P = π($\tilde{P}$). When the intersection multiplicity at $\tilde{P}$ of the curve $\tilde{C}$ and the tangent line at $\tilde{P}$ is equal to d − 3 or d − 4, we determine the Weierstrass gap sequence at P on C using blowing-ups and blowing-downs of some rational surfaces.
Databáze: OpenAIRE