Radial distribution of dust, stars, gas, and star-formation rate in DustPedia face-on galaxies
Autor: | Jonathan Ivor Davies, Richard Evans, Nathalie Ysard, Maarten Baes, I. De Looze, Sébastien Viaene, Aleksandr V. Mosenkov, Suzanne C. Madden, Viviana Casasola, Laura Magrini, Frédéric Galliano, Emmanuel M. Xilouris, Jacopo Fritz, P. De Vis, Letizia P. Cassarà, Christopher J. R. Clark, Matthew Smith, Simone Bianchi, Anthony P. Jones, Maud Galametz, S. Verstocken |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
010504 meteorology & atmospheric sciences
Metallicity FOS: Physical sciences Astrophysics Astrophysics::Cosmology and Extragalactic Astrophysics 01 natural sciences POLYCYCLIC AROMATIC-HYDROCARBONS STELLAR POPULATIONS 0103 physical sciences Astrophysics::Solar and Stellar Astrophysics Surface brightness COLD DUST 010303 astronomy & astrophysics GIANT MOLECULAR CLOUDS molecules [ISM] Astrophysics::Galaxy Astrophysics 0105 earth and related environmental sciences QB Physics Spiral galaxy ISM [galaxies] FORMING GALAXIES Star formation extinction Astronomy and Astrophysics Radius ARRAY CAMERA IRAC DISK-DOMINATED GALAXIES Astrophysics - Astrophysics of Galaxies Galaxy Stars Wavelength spiral [galaxies] Physics and Astronomy Space and Planetary Science Astrophysics of Galaxies (astro-ph.GA) structure [galaxies] photometry [galaxies] DIGITAL SKY SURVEY dust INFRARED SURFACE PHOTOMETRY Astrophysics::Earth and Planetary Astrophysics NEARBY SPIRAL GALAXIES |
Zdroj: | ASTRONOMY & ASTROPHYSICS |
ISSN: | 1432-0746 0004-6361 |
Popis: | The purpose of this work is the characterization of the radial distribution of dust, stars, gas, and star-formation rate (SFR) in a sub-sample of 18 face-on spiral galaxies extracted from the DustPedia sample. This study is performed by exploiting the multi-wavelength, from UV to sub-mm bands, DustPedia database, in addition to molecular (12CO) and atomic (HI) gas maps and metallicity abundance information available in the literature. We fitted the surface brightness profiles of the tracers of dust and stars, the mass surface density profiles of dust, stars, molecular gas, and total gas, and the SFR surface density profiles with an exponential curve and derived their scale-lengths. We also developed a method to solve for the CO-to-H2 conversion factor (alpha_CO) per galaxy by using dust and gas mass profiles. Although each galaxy has its own peculiar behaviour, we identified a common trend of the exponential scale-lengths vs. wavelength. On average, the scale-lengths normalized to the B-band 25 mag/arcsec^2 radius decrease from UV to 70 micron, from 0.4 to 0.2, and then increase back up to 0.3 at 500 microns. The main result is that, on average, the dust mass surface density scale-length is about 1.8 times the stellar one derived from IRAC data and the 3.6 micron surface brightness, and close to that in the UV. We found a mild dependence of the scale-lengths on the Hubble stage T: the scale-lengths of the Herschel bands and the 3.6 micron scale-length tend to increase from earlier to later types, the scale-length at 70 micron tends to be smaller than that at longer sub-mm wavelength with ratios between longer sub-mm wavelengths and 70 micron that decrease with increasing T. The scale-length ratio of SFR and stars shows a weak increasing trend towards later types. Comment: 33 pages, 9 figures (at low resolution here), 8 tables, Accepted for publication in A&A |
Databáze: | OpenAIRE |
Externí odkaz: |