Using Machine Learning Models to Predict the Length of Stay in a Hospital Setting

Autor: Abdelahad Chraibi, Sondes Chaabane, Rachda Naila Mekhaldi, Sylvain Piechowiak, Patrice Caulier
Přispěvatelé: Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 (LAMIH), Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-INSA Institut National des Sciences Appliquées Hauts-de-France (INSA Hauts-De-France)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: 8th World Conference on Information Systems and Technologies (WorldCIST’2020)
8th World Conference on Information Systems and Technologies (WorldCIST’2020), Apr 2020, Budva, Montenegro. pp.202-211
Trends and Innovations in Information Systems and Technologies ISBN: 9783030456870
WorldCIST (1)
Popis: International audience; Proper prediction of Length Of Stay (LOS) has become increasingly important these years. The LOS prediction provides better services, managing hospital resources and controls their costs. In this paper , we compared two Machine Learning (ML) methods on the Microsoft available dataset. This data are been firstly preprocessed by combining data transformation, data standardization and data codification. Then, the Random Forest (RF) and the Gradient Boosting model (GB) were carried out, with a phase of hyper parameters tuning until setting optimal coefficients. Finally, the Mean Square Error (MAE), R-squared (R 2) and the Adjusted R-squared (Adjusted R 2) metrics are selected to evaluate model with parameters. The best model is saved to be trained with real data later using transfer learning techniques.
Databáze: OpenAIRE