Functional plasticity of antibacterial EndoU toxins
Autor: | Karolina Michalska, Dinh Quan Nhan, Christopher S. Hayes, Allison M. Jones, Andrzej Joachimiak, Celia W. Goulding, Lucy Stols, Julia L. E. Willett, David A. Low, William H. Eschenfeldt, Sanna Koskiniemi, Josephine Y. Nguyen |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Sequence analysis Bacterial Toxins medicine.disease_cause Medical and Health Sciences Microbiology Article 03 medical and health sciences RNA Transfer Sequence Analysis Protein Catalytic triad Endoribonucleases medicine Escherichia coli Ribonuclease Amino Acid Sequence Molecular Biology Peptide sequence Nuclease Agricultural and Veterinary Sciences biology Effector Protein Prevention Escherichia coli Proteins Biological Sciences Anti-Bacterial Agents Transfer 030104 developmental biology Biochemistry Transfer RNA biology.protein RNA Sequence Analysis |
Zdroj: | Molecular microbiology, vol 109, iss 4 Molecular Microbiology |
Popis: | Bacteria use several different secretion systems to deliver toxic EndoU ribonucleases into neighboring cells. Here, we present the first structure of a prokaryotic EndoU toxin in complex with its cognate immunity protein. The contact-dependent growth inhibition toxin CdiA-CT(STECO31) from Escherichia coli STEC_O31 adopts the eukaryotic EndoU fold and shares greatest structural homology with the nuclease domain of coronavirus Nsp15. The toxin contains a canonical His-His-Lys catalytic triad in the same arrangement as eukaryotic EndoU domains, but lacks the uridylate-specific ribonuclease activity that characterizes the superfamily. Comparative sequence analysis indicates that bacterial EndoU domains segregate into at least three major clades based on structural variations in the N-terminal subdomain. Representative EndoU nucleases from clades I and II degrade tRNA molecules with little specificity. In contrast, CdiA-CT(STECO31) and other clade III toxins are specific anticodon nucleases that cleave tRNA(Glu) between nucleotides C37 and m(2)A38. These findings suggest that the EndoU fold is a versatile scaffold for the evolution of novel substrate specificities. Such functional plasticity may account for the widespread use of EndoU effectors by diverse inter-bacterial toxin delivery systems. |
Databáze: | OpenAIRE |
Externí odkaz: |