An Elastodiffusive Orthotropic Euler–Bernoulli Beam Considering Diffusion Flux Relaxation

Autor: Andrei V. Zemskov, D. V. Tarlakovskii
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Mathematical and Computational Applications
Volume 24
Issue 1
Mathematical and Computational Applications, Vol 24, Iss 1, p 23 (2019)
ISSN: 2297-8747
DOI: 10.3390/mca24010023
Popis: This article considers an unsteady elastic diffusion model of Euler&ndash
Bernoulli beam oscillations in the presence of diffusion flux relaxation. We used the model of coupled elastic diffusion for a homogeneous orthotropic multicomponent continuum to formulate the problem. A model of unsteady bending for the elastic diffusive Euler&ndash
Bernoulli beam was obtained using Hamilton&rsquo
s variational principle. The Laplace transform on time and the Fourier series expansion by the spatial coordinate were used to solve the obtained problem.
Databáze: OpenAIRE