An Elastodiffusive Orthotropic Euler–Bernoulli Beam Considering Diffusion Flux Relaxation
Autor: | Andrei V. Zemskov, D. V. Tarlakovskii |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
02 engineering and technology
Bending coupled problem Green’s function Orthotropic material 01 natural sciences integral transformation lcsh:QA75.5-76.95 010305 fluids & plasmas Physics::Fluid Dynamics 0203 mechanical engineering Variational principle multicomponent continuum 0103 physical sciences Diffusion (business) Fourier series Physics Laplace transform Applied Mathematics lcsh:T57-57.97 lcsh:Mathematics Mathematical analysis General Engineering lcsh:QA1-939 Computational Mathematics 020303 mechanical engineering & transports Computer Science::Graphics unsteady problem elastic diffusion Euler–Bernoulli beam lcsh:Applied mathematics. Quantitative methods Relaxation (approximation) lcsh:Electronic computers. Computer science Beam (structure) |
Zdroj: | Mathematical and Computational Applications Volume 24 Issue 1 Mathematical and Computational Applications, Vol 24, Iss 1, p 23 (2019) |
ISSN: | 2297-8747 |
DOI: | 10.3390/mca24010023 |
Popis: | This article considers an unsteady elastic diffusion model of Euler&ndash Bernoulli beam oscillations in the presence of diffusion flux relaxation. We used the model of coupled elastic diffusion for a homogeneous orthotropic multicomponent continuum to formulate the problem. A model of unsteady bending for the elastic diffusive Euler&ndash Bernoulli beam was obtained using Hamilton&rsquo s variational principle. The Laplace transform on time and the Fourier series expansion by the spatial coordinate were used to solve the obtained problem. |
Databáze: | OpenAIRE |
Externí odkaz: |