Carbon isotope composition, water use efficiency, and drought sensitivity are controlled by a common genomic segment in maize

Autor: Zhenyu Yang, Adel Meziane, Sonja Blankenagel, Stella Eggels, Viktoriya Avramova, Thomas Presterl, Erwin Grill, Brigitte Poppenberger, Sebastian Gresset, Chris-Carolin Schön, Milena Ouzunova, Claude Welcker, François Tardieu, Eva Bauer, Wilfried Rozhon, Claudiu Niculaes
Přispěvatelé: Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), BBSRC John Innes Centre, Partenaires INRAE, Écophysiologie des Plantes sous Stress environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), KWS SAAT SE & Co.KGaA, Bavarian State Ministry of the Environment and Consumer Protection project network BayKlimaFit (Project TGC01GCUFuE69741) for providing the LI-6800 devices, German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) through the Sonderforschungsbereich 924 (SFB924): 'Molecular mechanisms regulating yield and yield stability in plants', project 'Maximizing photosynthetic efficiency in maize (FullThrottle)', funded by the Federal Ministry of Education and Research (BMBF, Germany) within the scope of the funding initiative 'Plant Breeding Research for the Bioeconomy' (Funding ID: 031B0205C), European Project: 284443,EC:FP7:INFRA,FP7-INFRASTRUCTURES-2011-1,EPPN(2012), John Innes Centre [Norwich], Biotechnology and Biological Sciences Research Council (BBSRC)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
0106 biological sciences
0301 basic medicine
Stomatal conductance
Quantitative Trait Loci
Introgression
carbone isotopique
Biology
01 natural sciences
Chromosomes
Plant

zea mays
03 medical and health sciences
chemistry.chemical_compound
Stress
Physiological

Genomic Segment
Genetics
[SDV.BV]Life Sciences [q-bio]/Vegetal Biology
conductance stomatique
lignée quasi isogénique
Water-use efficiency
Abscisic acid
2. Zero hunger
Carbon Isotopes
Vegetal Biology
croissance de la feuille
Water
General Medicine
15. Life on land
ddc
Droughts
Plant Leaves
plateforme de phénotypage
030104 developmental biology
Water potential
Phenotype
chemistry
Agronomy
13. Climate action
Soil water
Plant Stomata
région génomique
Original Article
efficience d'utilisation de l'eau
adaptation au changement climatique
Agronomy and Crop Science
Water use
Biologie végétale
010606 plant biology & botany
Biotechnology
Zdroj: TAG Theoretical and Applied Genetics
TAG Theoretical and Applied Genetics, Springer Verlag, 2019, 132 (1), pp.53-63. ⟨10.1007/s00122-018-3193-4⟩
TAG Theoretical and Applied Genetics, 2019, 132 (1), pp.53-63. ⟨10.1007/s00122-018-3193-4⟩
Theoretical and Applied Genetics 1 (132), 53-63. (2019)
TAG. Theoretical and Applied Genetics. Theoretische Und Angewandte Genetik
ISSN: 0040-5752
1432-2242
Popis: Key message A genomic segment on maize chromosome 7 influences carbon isotope composition, water use efficiency, and leaf growth sensitivity to drought, possibly by affecting stomatal properties. Abstract Climate change is expected to decrease water availability in many agricultural production areas around the globe. Therefore, plants with improved ability to grow under water deficit are urgently needed. We combined genetic, phenomic, and physiological approaches to understand the relationship between growth, stomatal conductance, water use efficiency, and carbon isotope composition in maize (Zea mays L.). Using near-isogenic lines derived from a maize introgression library, we analysed the effects of a genomic region previously identified as affecting carbon isotope composition. We show stability of trait expression over several years of field trials and demonstrate in the phenotyping platform Phenodyn that the same genomic region also influences the sensitivity of leaf growth to evaporative demand and soil water potential. Our results suggest that the studied genomic region affecting carbon isotope discrimination also harbours quantitative trait loci playing a role in maize drought sensitivity possibly via stomatal behaviour and development. We propose that the observed phenotypes collectively originate from altered stomatal conductance, presumably via abscisic acid. Electronic supplementary material The online version of this article (10.1007/s00122-018-3193-4) contains supplementary material, which is available to authorized users.
Databáze: OpenAIRE