Deep Learning Model Based on Urban Multi-Source Data for Predicting Heavy Metals (Cu, Zn, Ni, Cr) in Industrial Sewer Networks

Autor: Yiqi Jiang, Chaolin Li, Hongxing Song, Wenhui Wang
Rok vydání: 2022
Předmět:
Zdroj: SSRN Electronic Journal.
ISSN: 1556-5068
Popis: The high concentrations of heavy metals in municipal industrial sewer networks will seriously impact the microorganisms of the activated sludge in the wastewater treatment plant (WWTP), thus deteriorating the effluent quality and destroying the stability of sewage treatment. Therefore, timely prediction and early warning of heavy metal concentrations in industrial sewer networks is crucial. However, due to the complex sources of heavy metals in industrial sewer networks, traditional physical modeling and linear methods cannot establish an accurate prediction model. Herein, we developed a Gated Recurrent Unit (GRU) neural network model based on a deep learning algorithm for predicting the concentrations of heavy metals in industrial sewer networks. To train the GRU model, we used low-cost and easy-to-obtain urban multi-source data, including socio-environmental indicator data, air environmental indicator data, water quantity indicator data, and easily measurable water quality indicator data. The model was applied to predict the concentrations of heavy metals (Cu, Zn, Ni, and Cr) in the sewer networks of an industrial area in southern China. The results are compared with the commonly used Artificial Neural Network (ANN) model. In this study, it was shown that the GRU had better prediction performance for Cu, Zn, Ni, and Cr concentrations, with the average R
Databáze: OpenAIRE