Cold-responsive miRNAs and their target genes in the wild eggplant species Solanum aculeatissimum

Autor: Wang Lu, Yang Xu, Liu Fei, Zhang Yu, Cheng Yufu
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: BMC Genomics, Vol 18, Iss 1, Pp 1-13 (2017)
BMC Genomics
ISSN: 1471-2164
DOI: 10.1186/s12864-017-4341-y
Popis: Background Low temperature is an important abiotic stress in plant growth and development, especially for thermophilic plants. Eggplants are thermophilic vegetables, although the molecular mechanism of their response to cold stress remains to be elucidated. MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs that play an essential role during plant development and stress responses. Although the role of many plant miRNAs in facilitating chilling tolerance has been verified, little is known about the mechanisms of eggplant chilling tolerance. Results Here, we used high-throughput sequencing to extract the miRNA and target genes expression profiles of Solanum aculeatissimum (S. aculeatissimum) under low temperature stress at different time periods(0 h, 2 h, 6 h, 12 h, 24 h). Differentially regulated miRNAs and their target genes were analyzed by comparing the small RNA (sRNA) and miRBase 20.0 databases using BLAST or BOWTIE, respectively. Fifty-six down-regulated miRNAs and 28 up-regulated miRNAs corresponding to 220 up-regulated mRNAs and 94 down-regulated mRNAs, respectively, were identified in S. aculeatissimum. Nine significant differentially expressed miRNAs and twelve mRNAs were identified by quantitative Real-time PCR and association analysis, and analyzed for their GO function enrichment and KEGG pathway association. Conclusions In summary, numerous conserved and novel miRNAs involved in the chilling response were identified using high-throughput sequencing, which provides a theoretical basis for the further study of low temperature stress-related miRNAs and the regulation of cold-tolerance mechanisms of eggplant at the miRNA level. Electronic supplementary material The online version of this article (10.1186/s12864-017-4341-y) contains supplementary material, which is available to authorized users.
Databáze: OpenAIRE